前两天写了一个遗传算法求最优解的程序,今天拿出来简单整理一下。
最优解问题:四个变量取何值,该函数取最大值时?(取值范围-5到5)
显然,当四个未知数都为零的时候,函数取最大值,但如何利用遗传算法来实现,才是要研究的问题。
struct chromosome
{
vector<double> s_chromosome;
double s_value;
double s_fit;
};
//基因
#define gene double
//种群
#define pool vector
//参数:
//种群规模N
//交配概率Pc
//变异概率Pm
class GA
{
public:
GA(int N,double pc,double pm); //根据参数确定种群规模
GA(int N);
~GA(void);
//初始化
bool initial_pool();
//开始迭代
int run(int Maxnum,double d);
double get_best_value();
chromosome get_best_chro();
private:
int c_n; //种群规模
double c_Pc; //交配概率Pc
double c_Pm; //变异概率Pm
gene c_gene_tmp; //临时基因
chromosome c_chromosome_temp; //一条临时染色体
pool c_pool; //种群
//适应值评价,最优染色体
bool eval_pool();
//选择
bool selection();
//交配
bool crossover();
//变异
bool mutation();
};
//设定取值范围
inline double get_5_5_rand()
{
random_device rd;
double a=double((rd()*6553)%100000)/100000;
a=(a-.5)*10;
return a;
}
//得到0--3之间的随机数
inline int get_0_3_rand()
{
random_device rd;
int a= rd()%4;
return a;
}
//0--1
inline double get_0_1_rand()
{
random_device rd;
double a=double((rd()*6553)%100000)/100000;
return a;
}
inline double get_chro_value(chromosome chro)
{
double a=0,tmp=0;
for(int i=0;i1/(tmp+1);
return a;
}
#include "GA.h"
inline bool sort_value(const chromosome &aim1,const chromosome &aim2);
GA::GA(int N,double pc,double pm)
{
c_n=N;
c_Pc=pc;
c_Pm=pm;
}
GA::GA(int N)
{
c_n=N;
c_Pc=0.5; //一般取值0.4--0.99
c_Pm=0.1; //一般取值0.001-0.1
}
GA::~GA(void)
{
cout<<"清理GA类内存------------------"<bool GA::initial_pool()
{
c_pool.clear();
//初始化染色体群
for(int j=0; j < c_n;j++)
{
c_chromosome_temp.s_chromosome.clear();
//得到一条染色体
for(int i =0;i<4;i++)
{
c_chromosome_temp.s_chromosome.push_back(
get_5_5_rand());
}
c_chromosome_temp.s_value=0;
c_pool.push_back(c_chromosome_temp);
}
cout<<"初始值:"<cout<<"x1:"<0]
<<" x2:"<1]
<<" x3:"<2]
<<" x4:"<3]<return true;
}
//适应值评价
bool GA::eval_pool()
{
int i=0;
while (i!=c_pool.size())
{
double temp=0;
for(int j=0;j1/(temp+1);
i++;
}
sort(c_pool.begin(),c_pool.end(),sort_value);
return true;
}
inline bool sort_value(const chromosome &aim1,const chromosome &aim2)
{
return (aim1.s_value>aim2.s_value);
}
//根据对大自然的适应能力,进行自然选择,优胜劣汰
bool GA::selection()
{
double all_value=0;
int i=0;
while(true)
{
all_value+=c_pool[i].s_value;
i++;
if(i>=c_pool.size())
{
i=0;
break;
}
}
//计算适应值fit
while(true)
{
c_pool[i].s_fit=c_pool[i].s_value/all_value;
i++;
if(i>=c_pool.size())
{
i=0;
break;
}
}
//赌盘选择
pool tmp_pool;
for(int k=0;kdouble m=0,r=get_0_1_rand();
for(int j=0;jif(r<=m)
{
tmp_pool.push_back(c_pool[j]);
break;
}
}
}
c_pool.clear();
c_pool=tmp_pool;
return true;
}
//染色体交配
bool GA::crossover()
{
vector ::iterator it=c_pool.begin();
pool cross_pool,no_cross_pool;
//得到交叉池和非交叉池
for(int i=0;idouble a=get_0_1_rand();
if (aelse
no_cross_pool.push_back(c_pool[i]);
}
//进行交叉
//不需要交叉
if(cross_pool.size()==0)
{
c_pool.clear();
c_pool=no_cross_pool;
return true;
}
else if (cross_pool.size()==1)
{
c_pool.clear();
c_pool=no_cross_pool;
c_pool.push_back(cross_pool[0]);
return true;
}
else
{
chromosome cross_tmp1,cross_tmp2,cross_1,cross_2;
for(int i=0;i<4;i++)
{
cross_tmp1.s_chromosome.push_back(0);
cross_tmp2.s_chromosome.push_back(0);
}
//交叉数量位偶数
if (cross_pool.size()%2==0)
{
for(int i=0;i2)
{
int lc=get_0_3_rand();
//开始交叉
for(int j=0;j<4;j++)
{
cross_1=cross_pool[i];
cross_2=cross_pool[i+1];
if(lc1].s_chromosome[j];
}
else
{
cross_tmp2.s_chromosome[j]=cross_pool[i].s_chromosome[j];
cross_tmp1.s_chromosome[j]=cross_pool[i+1].s_chromosome[j];
}
}
//交叉结束,将新的染色体放入nocrosspool
if(get_chro_value(cross_tmp1)>get_chro_value(cross_1))
no_cross_pool.push_back(cross_tmp1);
else
no_cross_pool.push_back(cross_1);
if(get_chro_value(cross_tmp2)>get_chro_value(cross_2))
no_cross_pool.push_back(cross_tmp2);
else
no_cross_pool.push_back(cross_2);
}
}
//交叉数量位奇数,放弃交叉第一个
else
{
no_cross_pool.push_back(cross_pool[0]);
for(int i=1;i2)
{
int lc=get_0_3_rand();
//开始交叉
for(int j=0;j<4;j++)
{
cross_1=cross_pool[i];
cross_2=cross_pool[i+1];
if(lc1].s_chromosome[j];
}
else
{
cross_tmp2.s_chromosome[j]=cross_pool[i].s_chromosome[j];
cross_tmp1.s_chromosome[j]=cross_pool[i+1].s_chromosome[j];
}
}
//交叉结束,将新的染色体放入nocrosspool
//如果交叉后代比上一代更好,就把父代替换子代
if(get_chro_value(cross_tmp1)>get_chro_value(cross_1))
no_cross_pool.push_back(cross_tmp1);
else
no_cross_pool.push_back(cross_1);
if(get_chro_value(cross_tmp2)>get_chro_value(cross_2))
no_cross_pool.push_back(cross_tmp2);
else
no_cross_pool.push_back(cross_2);
}
}
c_pool.clear();
c_pool=no_cross_pool;
return true;
}
}
//根据变异率,进行染色体变异
bool GA::mutation()
{
int i=0;
while(true)
{
double rm=get_0_1_rand();
chromosome bianyi=c_pool[i];
if(rmint lc=get_0_3_rand();//变异位置
bianyi.s_chromosome[lc]=get_5_5_rand();
if(get_chro_value(bianyi)>get_chro_value(c_pool[i]))
c_pool[i]=bianyi;
}
i++;
if(i>=c_pool.size())
{
i=0;
break;
}
}
return true;
}
int GA::run(int Maxnum,double d)
{
int i=0;
double last_value=0,current_value;
while (true)
{
i++;
eval_pool();
current_value=c_pool[0].s_value;
selection();
crossover();
mutation();
if(i%40==0)
cout<<"current_value:"<if(abs(current_value-last_value)//cout<<"相邻迭代误差达到要求"<
//break;
}
if(i>=Maxnum)
{
cout<<"超出迭代次数,算法结束!"<break;
}
last_value=current_value;
}
eval_pool();
return i;
}
double GA::get_best_value()
{
return c_pool[0].s_value;
}
chromosome GA::get_best_chro()
{
return c_pool[0];
}
#include "GA.h"
#include "test.h"
#define ERROR 0.00000001
#define MAXNUM 1000
int main()
{
GA my_GA(10);
my_GA.initial_pool();
cout<<"迭代次数:"<.run(MAXNUM,ERROR)<;
cout<<"最优解:"<.get_best_value()<;
cout<<"x1:"<.get_best_chro().s_chromosome[0]
<<" x2:"<.get_best_chro().s_chromosome[1]
<<" x3:"<.get_best_chro().s_chromosome[2]
<<" x4:"<.get_best_chro().s_chromosome[3]<;
system("pause");
}
在程序编写过程中,遇到了几个小问题
srand((unsigned)time(NULL));
的方法发现每一次生成的随机数都是一样的规律,不能用于遗传算法,网上查了一下发现,c++自带了一种随机数生成器,可以产生较为“随机”的随机数,最起码每次的规律是不相同的。使用方法:#include
//得到0--3之间的随机数
inline int get_0_3_rand()
{
random_device rd;
int a= rd()%4;
return a;
}
//交叉结束,将新的染色体放入nocrosspool
if(get_chro_value(cross_tmp1)>get_chro_value(cross_1))
no_cross_pool.push_back(cross_tmp1);
else
no_cross_pool.push_back(cross_1);
if(get_chro_value(cross_tmp2)>get_chro_value(cross_2))
no_cross_pool.push_back(cross_tmp2);
else
no_cross_pool.push_back(cross_2);