Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
最大子序和
给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
思路:动态规划。 dp[i]表示以nums[i]结尾的子序列的最大和。如果求dp[i + 1]时,有两种情况1)nums[i + 1],即第i + 1个数本身,2)是d[i] + nums[i + 1],因此只要求max(nums[i + 1], d[i] + nums[i + 1])即可,边界值dp[0] = nums[0],算法时间复杂度为O(n),
对于该类问题,动态规划是最好且容易理解的算法
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
length=len(nums)
dp=[0]*length
dp[0]=nums[0]
maxsum=dp[0]
for i in range(1,length):
if dp[i-1]+nums[i]>=nums[i]:
dp[i]=dp[i-1]+nums[i]
else:
dp[i]=nums[i]
if dp[i]>=maxsum:
maxsum=dp[i]
return maxsum
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
思路:
动态规划经典题目,用迭代的方法解决。
1. 先处理none case和special case
2. 2D-matrix的第一行和第一列上的元素 只能从上面的元素或左边的元素达到,因此可以直接获得其值
3. 遍历其余的位置:每一个position只能由其左边或者上边的元素达到,这样可得迭代公式 dp[row][col]=dp[row-1][col]+dp[row][col-1]
4. 遍历完成后 dp矩阵存放了从其实位置到当前位置的所有可能走法,因此返回dp[m-1][n-1]就是需要的值
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
if m<1 or n<1:
return 0
if m==1 or n==1:
return 1
dp=[[0 for col in range(n)] for row in range(m)]
for i in range(n):
dp[0][i]=1
for j in range(m):
dp[j][0]=1
for row in range(1,m):
for col in range(1,n):
dp[row][col]=dp[row-1][col]+dp[row][col-1]
return dp[m-1][n-1]
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
Note: m and n will be at most 100.
Example 1:
Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
思路:同上题一样,还是用动态规划,只不过此题多了一个条件判断
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
m=len(obstacleGrid)
n=len(obstacleGrid[0])
dp=[[0 for i in range(n)] for j in range(m)]
for i in range(m):
if obstacleGrid[i][0]==0:
dp[i][0]=1
else:
dp[i][0]=0
break
for i in range(n):
if obstacleGrid[0][i]==0:
dp[0][i]=1
else:
dp[0][i]=0
break
for i in range(1,m):
for j in range(1,n):
if obstacleGrid[i][j]==1:
dp[i][j]=0
else:
dp[i][j]=dp[i-1][j]+dp[i][j-1]
return dp[m-1][n-1]
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
最小路径和
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
思路:使用动态规划
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
m=len(grid)
n=len(grid[0])
dp=[[0 for i in range(n)] for j in range(m)]
dp[0][0]=grid[0][0]
for i in range(1,n):
dp[0][i]=dp[0][i-1]+grid[0][i]
for i in range(1,m):
dp[i][0]=dp[i-1][0]+grid[i][0]
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j]
return dp[m-1][n-1]
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps
Example 2:
Input: 3 Output: 3 Explanation: There are three ways to climb to the top. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step
爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
思路:动态规划。每次上一个台阶或者两个台阶,问一共有多少种方法到楼顶。这个实际上就是斐波那契数列的求解。可以逆向来分析问题,如果有n个台阶,那么走完n个台阶的方式有f(n)种。而走完n个台阶有两种方法,先走完n-2个台阶,然后跨2个台阶;先走完n-1个台阶,然后跨1个台阶。所以f(n) = f(n-1) + f(n-2)。
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
dp=[1 for i in range(n+1)]
for i in range(2,n+1):
dp[i]=dp[i-1]+dp[i-2]
return dp[n]