项目链接:https://www.kaggle.com/c/digit-recognizer
在kaggle上做的第一个项目,作为数据分析的初学者,学习到了很多东西
在本次比赛中,您的目标是正确识别来自数万个手写图像数据集的数字。我们策划了一套教程式的内核,涵盖从回归到神经网络的一切。我们鼓励您尝试使用不同的算法来学习第一手什么工作良好以及技术如何比较。
这里我使用了SVM和MLP两种方法解决,代码如下
#-*- coding: utf-8 -*-
import pandas as pd
from sklearn import svm, metrics
from sklearn.decomposition import PCA
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
train_x = train.ix[:,1:].values.astype('int32')
train_y = train.ix[:,0].values.astype('int32')
test_x = test.ix[:,:].values.astype('int32')
# PCA reduction
pca = PCA(n_components=36, whiten=True)
pca.fit(train_x)
train_x = pca.transform(train_x)
test_x = pca.transform(test_x)
# print train_y
# print type(train_x), type(train_y)
# print len(train_y), len(train_x)
# print train_x[0], train_y[0]
# SVM classifier
clf = svm.SVC()
clf.fit(train_x, train_y)
# test output
def write_preds(preds, fname):
pd.DataFrame({"ImageId": range(1,len(preds)+1), "Label": preds}).to_csv(fname, index=False, header=True)
test_y = clf.predict(test_x)
write_preds(test_y, 'out.csv')
#-*- coding: utf-8 -*-
from keras.models import Sequential
from keras.utils import np_utils
from keras.layers.core import Dense, Activation, Dropout
import pandas as pd
import numpy as np
# Read data
train = pd.read_csv('../input/train.csv')
labels = train.ix[:,0].values.astype('int32')
X_train = (train.ix[:,1:].values).astype('float32')
X_test = (pd.read_csv('../input/test.csv').values).astype('float32')
# convert list of labels to binary class matrix
y_train = np_utils.to_categorical(labels)
# pre-processing: divide by max and substract mean
scale = np.max(X_train)
X_train /= scale
X_test /= scale
mean = np.std(X_train)
X_train -= mean
X_test -= mean
input_dim = X_train.shape[1]
nb_classes = y_train.shape[1]
# Here's a Deep Dumb MLP (DDMLP)
model = Sequential()
model.add(Dense(128, input_dim=input_dim))
model.add(Activation('relu'))
model.add(Dropout(0.15))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.15))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
# we'll use categorical xent for the loss, and RMSprop as the optimizer
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
print("Training...")
model.fit(X_train, y_train, nb_epoch=10, batch_size=16, validation_split=0.1, verbose=2)
print("Generating test predictions...")
preds = model.predict_classes(X_test, verbose=0)
def write_preds(preds, fname):
pd.DataFrame({"ImageId": list(range(1,len(preds)+1)), "Label": preds}).to_csv(fname, index=False, header=True)
write_preds(preds, "mlp.csv")
提交数据,准确率0.96814