- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- PySpark之金融数据分析(Spark RDD、SQL练习题)
唯余木叶下弦声
大数据大数据sparkpysparkpython数据分析sql
目录一、数据来源二、PySparkRDD编程1、查询特定日期的资金流入和流出情况2、活跃用户分析三、PySparkSQL编程1、按城市统计2014年3月1日的平均余额2、统计每个城市总流量前3高的用户四、总结一、数据来源本文使用的数据来源于天池大赛数据集,由蚂蚁金服提供,包含用户基本信息、申购赎回记录、收益率、银行间拆借利率等多个维度,本文通过PySpark实现对该数据集的简单分析。数据来源:天池
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- java语言中“导包”的解释
喵果森森
java编程学习日志javajvmservlet
在java编程过程中,常常使用一种功能,叫“导包”。关键字为import例如importjava.util.Scanner;importjava.util.Random;什么是导包?导包即导入包,通过import关键字将他人完善的代码导入自己的代码中。“他人完善的代码”是被封装成类和包的形式,导入包,并不会将他人的代码插入自己的代码里,只需将其对象实例化后使用即可。什么人写的代码都可以导入吗?Ja
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 全网最最实用--教你用gradio搭网页、部署模型等(代码粘贴即用、不讲虚的)
绒绒毛毛雨
大模型算法microsoft前端语言模型人工智能ai
文章目录〇前言一、构建网页1.各个组件介绍a.文本输入和输出b.图像输入和输出c.音频输入和输出d.视频输入和输出e.文件上传和下载f.滑块(`Slider`)g.单选按钮(`Radio`)h.复选框(`CheckboxGroup`)j.数据表格(`Dataframe`)2.一个网页示例代码a.按钮使用指南(事件处理和回调)3.整个网页代码b.整个网页展示二、构建ai任务a.构建一个自己的大语言模
- 『大模型笔记』AI自动化编程工具汇总[持续更新ING]!
AI大模型前沿研究
大模型笔记大模型AI自动化工具bolt.newCursorV0
『大模型笔记』AI自动化编程工具汇总!文章目录一.Bolt.new(开源AI驱动全栈Web开发工具)1.1.Bolt.new介绍1.2.编程小白如何打造自己的导航网站二.Cursor(人工智能代码编辑器)2.1.Cursor入门教程2.2.Cursor左侧布局设置和VSCode一样2.3.Cursor效率之道:Agent模式+7大高级技巧详解三.Windsurf(颠覆Cursor的全新工具)3.1
- 龙珠训练营机器学习task04
a_little_pig_
python
学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/competition/entrance/231702/introduction?spm=5176.20222472.J_3678908510.8.8f5e67c2RKrT98总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入b
- LGBMRegressor CatBoostRegressor XGBRegressor回归
兔兔爱学习兔兔爱学习
竞赛代码实践回归数据挖掘
importpandasaspd#导入csv文件的库importnumpyasnp#进行矩阵运算的库importpolarsaspl#和pandas类似,但是处理大型数据集有更好的性能.#用于对一组元素计数,一个存在默认值的字典,访问不存在的值时抛出的是默认值fromcollectionsimportCounter,defaultdictimportre#用于正则表达式提取fromscipy.st
- 什么是vue.js组件开发,我们需要做哪些准备工作?
大懒猫软件
vue.js
Vue.js是一个非常流行的前端框架,用于构建用户界面。组件开发是Vue.js的核心概念之一,通过将界面拆分为独立的组件,可以提高代码的可维护性和复用性。以下是一个详细的Vue.js组件开发指南,包括基础概念、开发流程和代码示例。一、Vue.js组件开发基础1.组件的基本结构Vue.js组件是一个独立的、可复用的UI元素。每个组件都有自己的模板、逻辑和样式。组件的基本结构如下:vue复制{{tit
- golang-实现自己的事件驱动
小屋子大侠
服务端golang
golang实现自己的事件驱动众所周知,go中的异步操作都已经封装在了运行时的过程中,有关socket的网络的异步操作都封装到了go的netpoll中,从而简化了编程形式。本文也就根据evio库总结而来。golang跨平台库如何编写golang的跨平台库,现在主流的方式如下:evserver│go.mod│main.go│└───show││show.go││show_darwin.go││sho
- 行业模板|DataEase企业管理大屏模板推荐
FIT2CLOUD飞致云
开源数据可视化DataEase模板市场数据大屏企业管理
DataEase开源BI工具于2022年6月发布模板市场(https://templates.dataease.cn),并于2024年1月新增适用于DataEasev2版本的模板分类。模板市场旨在为DataEase用户提供专业、美观、拿来即用的大屏模板,方便用户根据自身的业务需求和使用场景选择对应的大屏模板,并且在优质模板的基础上轻松制作自己的仪表板及数据大屏。截至2024年12月18日,Data
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- [C++技能提升]类注册
Hunter_pcx
工程技能人工智能c++
最近在做AI信息在各个平台流转的框架设计,想要设计一种可以灵活扩展、不改变原有代码的框架,了解到了类注册。具体需求是这样的:AI算法在客户本地电脑和云端都有部署,原先AI在这两个平台下的输出格式并不统一,且每个AI功能都有自己的输出格式,导致两个平台下的AI信息无法共享,带来了计算资源的浪费,管理起来也比较混乱,因此需要一种模式将所有AI输出规范起来。我的解决思路大概就是将所有AI信息都规范输出到
- 【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPC Loss)如何计算?以及Wasserstein距离和CPC Loss结合的对抗训练示例,附代码(二)
努力学习的大大
深度学习基础深度学习迁移学习人工智能python
【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)文章目录【深度学习|迁移学习】Wassers
- H3C-交换机telnet远程配置案例
仓鼠OO
网络配置(H3C)H3C网络运维
目录1.telnet简述2.网络拓扑3.实验需求4.配置步骤4.1网络基本配置4.2telnet配置5.telnet测试远程6.小结1.telnet简述Telnet是远程登录服务的一个协议,该协议定义了远程登录用户与服务器交互的方式。它允许用户在一台联网的计算机上登录到一个远程分时系统中,然后像使用自己的计算机一样使用该远程系统。Telnet使用客户-服务器模式进行工作。在用户端,需要启动一个Te
- GOCI-L2可以指定变量和日期批量下载
一休哥※
数据集下载windows数据库数据集GOCI
下载数据集运行批量下载脚本按需修改代码注意修改时间修改需要的变量zip下载结果实现批量下载GOCI-II数据集标记 GOCI-II数据集下载脚本运行批量下载脚本数据集网站:https://kosc.kiost.ac.kr/gociSearch/list.nm?menuCd=11&lang=ko&url=gociSearch&dirString=/COMS/GOCI/L2/有批量下载数据集的需求,
- 基于ROS的相机和激光雷达离线自动标定
AUBarryRobot
传感器标定数码相机
目录前言理论背景相机和激光雷达标定原理实现思路Reference前言因为本人实际工作中在做视觉和雷达的相关融合工作,所以相机和雷达的传感器之间的位姿RT矩阵则是要首先进行解决的。标定对大部分人来说都很头疼,抵触,在网上进行调研也没有什么太好的方法,或者别人分享的项目和自己的相差很大,根本不适用或者不好复现。而且可能全程比较繁琐,需要手动进行各种操作,运行一大堆程序。我的联合标定程序,只需要采集对应
- 2023-简单点-非极大值抑制NMS
万物琴弦光锥之外
目标跟踪人工智能计算机视觉
非极大值抑制(Non-MaximumSuppression,NMS)是一种在目标检测中常用的后处理技术。NMS能够抑制那些与真实目标重叠较大的冗余检测框,留下最好的一个。非极大值抑制(Non-MaximumSuppression,NMS)的原理是:在目标检测中,对于检测到的冗余框,保留置信度最高的那个,抑制其他与它有较大重叠的冗余框。其基本原理是先在图像中找到所有可能包含目标物体的矩形区域,并按照
- C# Json字符串生成工具的实现与应用
徐子贡
本文还有配套的精品资源,点击获取简介:JSON是一种轻量级的数据交换格式,被广泛用于Web服务中,用以替代XML,因其简洁易处理特性。本课程主要介绍如何在C#中使用Json.NET库生成JSON字符串,并提供源码分析,帮助开发者理解并根据需求定制自己的Json字符串生成工具。课程将涵盖数据类型、库的使用、源码解析、工具定制、效率提升、扩展性以及如何将工具集成到项目中,从而加深对JSON生成原理的理
- 有史以来最全的异常类讲解没有之一!第二部分爆肝2万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第二部分
长风清留扬
最新Python入门基础合集python笔记学习异常处理改行学it异常BUG
本文是第二部分,第一部分请看:有史以来最全的异常类讲解没有之一!爆肝3万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第一部分博客主页:长风清留扬-CSDN博客系列专栏:Python基础专栏每天更新大数据相关方面的技术,分享自己的实战工作经验和学习总结,尽量帮助大家解决更多问题和学习更多新知识,欢迎评论区分享自己的看法感谢大家点赞收藏⭐评论异常类型IndexError
- 有史以来最全的异常类讲解没有之一!第三部分爆肝4万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第三部分
长风清留扬
最新Python入门基础合集python面试异常处理BUG异常类型职场和发展改行学it
本文是第三部分,第一第二部分请看:有史以来最全的异常类讲解没有之一!爆肝3万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第一部分有史以来最全的异常类讲解没有之一!第二部分爆肝2万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第二部分博客主页:长风清留扬-CSDN博客系列专栏:Python基础专栏每天更新大数据相关方面的技术,分享自己的实
- 还在为Python“运算符”中遇到的BUG而发愁吗?,变量相关的问题和解决办法看这篇文章就够了!
长风清留扬
androidpythonbug运算符
博客主页:长风清留扬-CSDN博客系列专栏:Python疑难杂症百科-BUG编年史每天更新大数据相关方面的技术,分享自己的实战工作经验和学习总结,尽量帮助大家解决更多问题和学习更多新知识,欢迎评论区分享自己的看法感谢大家点赞收藏⭐评论关于运算符中常见的问题和解决方法在Python编程的浩瀚宇宙中,变量如同星辰般璀璨,它们承载着数据,驱动着程序的运行。然而,即便是这些看似简单的构建块,也时常隐藏着令
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 星露谷模组开发教程#3 事件
c#
SMAPI提供了一些事件,比如游戏的内容、显示、输入等事件。这些事件可以让我们在游戏中添加自己的逻辑。这一节我们就来看看如何使用这些事件。注册一个事件在SMAPI中,我们可以通过IModHelper的Events属性来注册事件。比如我们要注册游戏启动事件,可以这样写:publicoverridevoidEntry(IModHelperhelper){helper.Events.GameLoop.G
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>