- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践
pk_xz123456
python算法仿真模型YOLO人工智能rnn深度学习开发语言lstm
以下是针对在RDK5开发板(基于NVIDIAJetsonOrin平台)部署YOLOv8模型的详细技术指南,涵盖从模型转换、优化到部署的全流程:YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践——基于TensorRT的高性能嵌入式部署方案第一章:技术背景与核心概念1.1RDK5开发板硬件架构NVIDIAJetsonOrinNX核心参数:1024-coreAmpereGPU
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- 【软考高级系统架构论文】论模型驱动架构设计方法及其应用
_Richard_
2025年软考系统架构师系统架构
论文真题模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。请围绕“模型驱动架构设计方法及其应用”论题,依次从以下三个方面进行论述。概要叙述你
- 解决YOLO模型从Python迁移到C++时目标漏检问题——跨语言部署中的关键陷阱与解决方案
马里马里奥-
YOLOpythonc++
问题背景当我们将Python训练的YOLO模型部署到C++环境时,常遇到部分目标漏检问题。这通常源于预处理/后处理差异、数据类型隐式转换或模型转换误差。本文通过完整案例解析核心问题并提供可落地的解决方案。一、常见原因分析预处理不一致Python常用OpenCV(BGR通道,归一化[0,1][0,1][0,1])C++可能误用其他库(如RGB通道,归一化[−1,1][-1,1][−1,1])差异值=
- C++、OpenVINO部署YOLOv5模型的指南(Windows)
马里马里奥-
c++openvinoopencv
C++、OpenVINO部署YOLOv5模型的指南(Windows)一、环境准备硬件要求软件配置二、模型转换流程1.导出ONNX模型2.转换为OpenVINOIR格式三、C++推理实现核心代码结构后处理关键算法四、性能优化技巧五、常见问题解答1:输出形状不匹配2:推理速度不达标六、部署效果展示七、结语一、环境准备硬件要求Intel第6代以上CPU16GB内存50GB可用磁盘空间软件配置Visual
- Cesium1.95中加载模型过多导致内存溢出的解决方案(服务端层面、代码层面、浏览器层面)
duansamve
cesiumchrome
针对Chrome浏览器加载Cesium1.95时因GLB模型和图片过多导致内存溢出的问题,以下是涵盖服务端、代码层和浏览器层的完整优化方案,结合性能瓶颈分析和具体实施策略:一、服务端优化(减少传输与解析压力)1、模型格式转换GLB→3DTiles:将大规模GLB模型转换为3DTiles格式,实现分块加载和视锥体裁剪。使用Cesiumion或gltf-pipeline工具转换,降低单次加载内存压力。
- Hummingbird库:将机器学习模型转换为深度学习模型
萧鼎
python基础到进阶教程机器学习深度学习人工智能
引言随着深度学习在各个领域的广泛应用,研究人员和工程师开始探索如何将传统的机器学习模型(如决策树、随机森林等)转换为可以在GPU上高效运行的神经网络模型。微软推出的Hummingbird库正是为了解决这一需求,它可以将经过训练的传统机器学习模型转换为等效的深度学习模型,从而加速推理并支持跨平台部署。在本博客中,我们将深入探讨Hummingbird的原理、使用方法、适用场景,并通过实验展示其优势。第
- sherpa-onnx 项目亮点解析
杜璟轶Freda
sherpa-onnx项目亮点解析sherpa-onnxk2-fsa/sherpa-onnx:Sherpa-ONNX项目与ONNX格式模型的处理有关,可能涉及将语音识别或者其他领域的模型转换为ONNX格式,并进行优化和部署。项目地址:https://gitcode.com/gh_mirrors/sh/sherpa-onnx1.项目的基础介绍Sherpa-onnx是一个开源项目,旨在提供一个基于ON
- 为什么RAG系统必须引入Rerank?深入解析两阶段检索的价值与挑战
一休哥助手
人工智能RAG
在当今大模型应用中,检索增强生成(RAG)已成为解决知识更新和幻觉问题的关键技术,但超过70%的RAG系统在首次部署后都面临答案不精准的困扰——而引入Rerank重排序机制,正是解开这一困局的关键密钥。一、RAG的精度困境:当“近似”检索遇到生成需求在经典RAG流程中,系统通过以下步骤运作:用户查询被Embedding模型转换为向量在向量数据库中进行相似度搜索(ANN)返回Top-K相关文档提示工
- RKNN-Toolkit 开源项目教程
彭宏彬
RKNN-Toolkit开源项目教程rknn-toolkit项目地址:https://gitcode.com/gh_mirrors/rk/rknn-toolkit1.项目介绍RKNN-Toolkit是一款由Rockchip开发的软件工具包,旨在为开发者提供模型转换、推理以及性能评估等功能,支持在PC和RockchipNPU平台(包括RK1808/RK1806/RK3399Pro/RV1109/RV
- 第3章 开源大模型框架概览3.3 模型转换框架与工具3.3.1 ONNX:跨框架模型转换
AI天才研究院
计算大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
https://aurigait.com/blog/onnx-onnx-runtime-and-tensortrt/1.背景介绍1.背景介绍开源大模型框架已经成为机器学习和深度学习领域的重要组成部分。这些框架为研究人员和工程师提供了强大的工具,以便更快地构建、训练和部署深度学习模型。在这个系列文章中,我们将深入探讨一些最受欢迎的开源大模型框架,并探讨它们在实际应用中的优势和局限性。在本章中,我们将
- 华为HCIP-Cloud-Service认证H13-821V2.0-001
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- SD模型转换之safetensors转为bin,解决safety_checker 报错问题
致命扼腕
SDAIGC多模态python深度学习计算机视觉服务器人工智能
前言最近同事给发了一个SD的任务,去评测一下效果,对于第一次接触的小白来说一脸懵,遇到了很多问题,写这篇帮大家排坑,自己也方便记录转换模型在转模型之前,我们需要装几个包diffusors,transformers和huggingface_hubpipinstallpackage-ihttps://mirrors.aliyun.com/pypi/simple即可接下来就是python脚本,来自官方h
- 安全稳定的模型转换工具:Ckpt2Safetensors GUI
安全稳定的模型转换工具:Ckpt2SafetensorsGUISafe-and-Stable-Ckpt2Safetensors-Conversion-Tool-GUIConvertyourStableDiffusioncheckpointsquicklyandeasily.项目地址:https://gitcode.com/gh_mirrors/sa/Safe-and-Stable-Ckpt2Saf
- win10 环境进行 python + pytorch + yolov8 + tensorRT( c++版 ) 测试过程记录
狄龙疤
pythonpytorchc++cudatensorRTyolov8计算机视觉
参考博客:1.YOLOv8模型转换pt->onnx(附上代码):https://blog.csdn.net/2303_80018785/article/details/1381949612.yolov8的TensorRT部署(C++版本):https://blog.csdn.net/liujiahao123987/article/details/133892746test.cpp就是使用此博客的d
- 大模型转换为 GGUF 并使用Ollama部署
大模型应用
知识图谱人工智能程序员大模型GGUF
下载的模型都是GGUF格式,那如何部署私有大模型呢?下面详细的对该过程解密:1什么是GGUF?为什么进行转换GGUF格式?1.1什么是GGUF?GGUF(GPT-GeneratedUnifiedFormat),提到GGUF就不得不提到它的前身GGML(GPT-GeneratedModelLanguage)。GGML是专门为了机器学习设计的张量库,最早可以追溯到2022/10。其目的是为了有一个单文
- 转换PP-OCRv5模型为OpenVINO格式的详细指南
mingo_敏
OpenVINOopenvino人工智能
转换PP-OCRv5模型为OpenVINO格式的详细指南一、引言PP-OCRv5是百度飞桨推出的高性能OCR(光学字符识别)模型,在文本检测和识别任务中表现出色。整体识别精度相比上一代提升13个百分点。OpenVINO则是英特尔推出的开源深度学习推理框架,能显著优化模型在英特尔硬件上的推理性能。本文将详细介绍如何将PP-OCRv5模型转换为OpenVINO格式(.xml和.bin文件),并实现高效
- 华为HCIP-Cloud-Service认证H13-821V2.0-002
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- RK3588 RKNN ResNet50推理测试
Hi20240217
环境搭建学习AI推理RK3588RKNNNPU
RK3588RKNNResNet50推理测试一、背景二、性能数据三、操作步骤3.1安装依赖3.2安装rknn-toolkit,更新librknnrt.so3.3下载推理图片3.4生成`onnx`模型转换脚本3.5生成rknn模型3.6运行rknn模型一、背景在嵌入式设备上进行AI推理时,我们面临着算力有限、功耗敏感等挑战。RK3588芯片搭载的NPU(神经网络处理单元)专为加速AI运算设计,而RK
- RK3588 IREE+Vulkan ResNet50推理测试
Hi20240217
环境搭建pytorch人工智能RK3588嵌入式IREEVulkan
RK3588IREE+VulkanResNet50推理测试背景一.性能数据【暂不考虑该框架】二.操作步骤2.1搭建NFS服务,解决IREE编译时,空间不足的问题2.2编译、安装`IREE`2.2.1挂载NFS2.2.2安装依赖2.2.3编译`IREE`2.2.4获取驱动及设备信息2.2.5下载推理图片2.2.6生成`onnx`模型转换脚本2.2.7生成运行推理测试脚本2.2.8`CPU-FP32`
- 甄选范文“论模型驱动架构设计方法及其应用”,软考高级论文,系统架构设计师论文
程序员古德
系统架构
论文真题模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。请围绕“模型驱动架构设计方法及其应用”论题,依次从以下三个方面进行论述。1.概要叙
- TensorFlow模型转换与优化:流程解析
TensorFlow模型转换与优化:流程解析在深度学习模型部署的实际场景中,我们常常需要对模型进行跨框架的转换与优化。本文将详细介绍两种将TensorFlow模型转换为ONNX格式、进行量化操作并最终转回TensorFlow的方法。通过这些方法,我们可以在保证模型性能的同时,显著减少模型的体积和内存占用,提高模型的运行效率。一、路径1:TensorFlow→ONNX→量化→重命名→TensorFl
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- PPOCRv4推理模型转换为nb模型
AAA抗刀小玉
ocrpaddleocrpythonpaddlepaddle深度学习
一、前期准备Andriodstudio4.2参考:https://blog.csdn.net/qq_40647372/article/details/133266819?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522246c9d8e3affc84f010618778b02955d%2522%252C%2522scm%2522%253
- EasyExcel高级特性和技术选型
快乐肚皮
java
文章目录前言一、EasyExcel核心优势二、EasyExcel高级特性2.1异步读取与多线程处理2.2动态模型转换与数据校验2.3定制复杂样式2.4监听器实现实时处理2.5与SpringBoot无缝集成三、EasyExcel、ApachePOI、JExcelApi、OpenCSV对比分析及如何选择四、使用建议总结前言在Java生态中,处理Excel文件的需求无处不在,无论是数据导入导出、报表生成
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那