【面试题】redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?

常见的有两个问题:

  • 往 redis 写入的数据怎么没了?
    可能有同学会遇到,在生产环境的 redis 经常会丢掉一些数据,写进去了,过一会儿可能就没了。我的天,同学,你问这个问题就说明 redis 你就没用对啊。redis 是缓存,你给当存储了是吧?
    啥叫缓存?用内存当缓存。内存是无限的吗,内存是很宝贵而且是有限的,磁盘是廉价而且是大量的。可能一台机器就几十个 G 的内存,但是可以有几个 T 的硬盘空间。redis 主要是基于内存来进行高性能、高并发的读写操作的。
    那既然内存是有限的,比如 redis 就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉 10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了。
  • 数据明明过期了,怎么还占用着内存?
    这是由 redis 的过期策略来决定。

redis 的过期策略都有哪些?

  • 定期删除(定期抽取随机key删除)
    所谓定期删除,指的是 redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。
    假设 redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上== redis 是每隔 100ms 随机抽取一些 key 来检查和删除的==。
    但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?
  • 惰性删除(获取key的时候根据过期时间删除)
    在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
    获取key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。
  • 定期删除和淘汰删除的弊端:
    但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?
    答案是:走内存淘汰机制。

内存淘汰机制
redis 内存淘汰机制有以下6个:

  • no-eviction(禁止驱逐数据): 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中(server.db[i].dict),移除最近最少使用的 key(这个是最常用的)
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中(server.db[i].dict),随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中(server.db[i].expires),移除最近最少使用的 key(这个一般不太合适)
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中(server.db[i].expires),随机移除某个 key。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中(server.db[i].expires),有将要过期时间的 key 优先移除。

手写一个 LRU 算法

手写一个 LRU 算法

public class LRUCache extends LinkedHashMap {
    private final int CACHE_SIZE;
    /**
     * 传递进来最多能缓存多少数据
     *
     * @param cacheSize 缓存大小
     */
    public LRUCache(int cacheSize) {
        // true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放在尾部。
        super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
        CACHE_SIZE = cacheSize;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry eldest) {
        // 当 map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。
        return size() > CACHE_SIZE;
    }
    public static void main(String args[]){
        LRUCache lruCache = new LRUCache(3);
        lruCache.put("1", "1");
        lruCache.put("2", "2");
        lruCache.put("3", "3");
        lruCache.put("4", "4");
        System.out.println(lruCache.get("1"));
        System.out.println(lruCache.get("2"));
        System.out.println(lruCache.get("3"));
        System.out.println(lruCache.get("4"));
    }
}

你可能感兴趣的:(职场@面试理论题)