- Python开发常用的三方模块如下:
换个网名有点难
python开发语言
Python是一门功能强大的编程语言,拥有丰富的第三方库,这些库为开发者提供了极大的便利。以下是100个常用的Python库,涵盖了多个领域:1、NumPy,用于科学计算的基础库。2、Pandas,提供数据结构和数据分析工具。3、Matplotlib,一个绘图库。4、Scikit-learn,机器学习库。5、SciPy,用于数学、科学和工程的库。6、TensorFlow,由Google开发的开源机
- 2023最详细的Python安装教程(Windows版本)
程序员林哥
Pythonpythonwindows开发语言
python安装是学习pyhon第一步,很多刚入门小白不清楚如何安装python,今天我来带大家完成python安装与配置,跟着我一步步来,很简单,你肯定能完成。第一部分:python安装(一)准备工作1、下载和安装python(认准官方网站)当然你不想去下载的话也可以分享给你,还有入门学习教程,点击下方卡片跳转进群领取(二)开始安装对于Windows操作系统,可以下载“executableins
- mysql学习教程,从入门到精通,TOP 和MySQL LIMIT 子句(15)
知识分享小能手
大数据数据库MySQLmysql学习oracle数据库开发语言adb大数据
1、TOP和MySQLLIMIT子句内容在SQL中,不同的数据库系统对于限制查询结果的数量有不同的实现方式。TOP关键字主要用于SQLServer和Access数据库中,而LIMIT子句则主要用于MySQL、PostgreSQL(通过LIMIT/OFFSET语法)、SQLite等数据库中。下面将分别详细介绍这两个功能的语法、语句以及案例。1.1、TOP子句(SQLServer和Access)1.1
- C# 开发教程-入门基础
天马3798
教程系列整理c#开发语言
1.C#简介、环境,程序结构2.C#基本语法,变量,控制局域,数据类型,类型转换3.C#数组、循环,Linq4.C#类,封装,方法5.C#枚举、字符串6.C#面相对象,继承,封装,多态7.C#特性、属性、反射、索引器8.C#委托,事件,集合,泛型9.C#匿名方法10.C#多线程更多:JQuery开发教程入门基础Vue开发基础入门教程Vue开发高级学习教程
- 关于python版本与TensorFlow安装的版本问题
iiimharrygGc.
pythontensorflow开发语言
实测在conda环境下,python3.12的版本无法安装TensorFlow2.14.0(截至2024.5.21)最新版本在python3.7版本下正常安装ps:上述安装均在anacondanavigator软件内安装
- Vue + Django的人脸识别系统
DXSsssss
pythonDRFtensorflow人脸识别
最近在研究机器学习,刚好最近看了vue+Djangodrf的一些课程,学以致用,做了一个人脸识别系统。项目前端使用Vue框架,用到了elementui组件,写起来真是方便。比之前传统的dtl方便了太多。后端使用了drf,识别知识刚开始打算使用opencv+tensorflow,但是发现吧识别以后的结果返回到浏览器当中时使用opencv比较麻烦(主要是我太菜,想不到比较好的方法),因此最终使用了tf
- Awesome TensorFlow
weixin_30594001
人工智能移动开发大数据
AwesomeTensorFlowAcuratedlistofawesomeTensorFlowexperiments,libraries,andprojects.Inspiredbyawesome-machine-learning.WhatisTensorFlow?TensorFlowisanopensourcesoftwarelibraryfornumericalcomputationusin
- 【ShuQiHere】小白也能懂的 TensorFlow 和 PyTorch GPU 配置教程
ShuQiHere
tensorflowpytorch人工智能
【ShuQiHere】在深度学习中,GPU的使用对于加速模型训练至关重要。然而,对于许多刚刚入门的小白来说,如何在TensorFlow和PyTorch中指定使用GPU进行训练可能会感到困惑。在本文中,我将详细介绍如何在这两个主流的深度学习框架中指定使用GPU进行训练,并确保每一个步骤都简单易懂,跟着我的步骤来,你也能轻松上手!1.安装所需库首先,确保你已经安装了TensorFlow或PyTorch
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- 基于VGG的猫狗识别
卑微小鹿
tensorflowtensorflow
由于猫和狗的数据在这里,所以就做了一下分类的神经网络1、首先进行图像处理:importcsvimportglobimportosimportrandomos.environ['TF_CPP_MIN_LOG_LEVEL']='2'importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportlayersimportnum
- 轻松升级:Ollama + OpenWebUI 安装与配置【AIStarter】
ai_xiaogui
AI作画AI软件人工智能AI写作AIStarter
Ollama是一个开源项目,用于构建和训练大规模语言模型,而OpenWebUI则提供了一个方便的前端界面来管理和监控这些模型。本文将指导你如何更新这两个工具,并顺利完成配置。准备工作确保你的系统已安装Git和Python环境。安装必要的依赖库,如TensorFlow或PyTorch等。更新步骤克隆项目:使用Git命令行工具克隆最新的Ollama和OpenWebUI仓库到本地。更新代码:确保你正在使
- 深度学习之基于Tensorflow卷积神经网络水果蔬菜分类识别系统
qq1744828575
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与目标背景:在现代农业、智能零售等领域,自动化分类与识别技术对于提高效率、优化供应链管理具有重要意义。为了响应这一需求,本项目旨在构建一个基于深度学习技术的水果蔬菜分类识别系统。目标:构建一个准确率高、性能稳定的水果蔬菜分类识别模型,利用Tensorflow框架
- ImportError: cannot import name ‘conv_utils‘ from ‘keras.utils‘
CheCacao
keras深度学习pythontensorflowtensorflow2人工智能
将fromkeras.utilsimportconv_utils改为fromtensorflow.python.keras.utilsimportconv_utilsImportError:nomodulenamed'tensorflow.keras.engine将fromkeras.engine.topologyimportLayer改为fromtensorflow.python.keras.l
- jupyter出错ImportError: cannot import name ‘np_utils‘ from ‘keras.utils‘ ,怎么解决?
七月初七淮水竹亭~
人工智能pythonjupyterkeras深度学习
文章前言此篇文章主要是记录一下我遇到的问题以及我是如何解决的,希望下次遇到类似问题可以很快解决。此外,也希望能帮助到大家。遇到的问题出错:ImportError:cannotimportname'np_utils'from'keras.utils',如图:如何解决首先我根据网上文章的一些提示,将fromkeras.utilsimportnp_utils换成了fromtensorflow.keras
- tensorflow和python不兼容_tensorflow与numpy的版本兼容性问题的解决
weixin_39727934
在Python交互式窗口导入tensorflow出现了下面的错误:ox8免费资源网root@ubuntu:~#python3Python3.6.8(default,Oct72019,12:59:55)[GCC8.3.0]onlinuxType"help","copyright","credits"or"license"formoreinformation.>>>importtensorflowas
- numpy python 兼容_tensorflow与numpy的版本兼容性问题
weixin_39761822
numpypython兼容
在Python交互式窗口导入tensorflow出现了下面的错误:root@ubuntu:~#python3Python3.6.8(default,Oct72019,12:59:55)[GCC8.3.0]onlinuxType"help","copyright","credits"or"license"formoreinformation.>>>importtensorflowastf;/usr/
- 安装tensorflow2.5.0 发现 tensorflow 和 numba 两者对应Numpy版本冲突
GJK_
tensorflownumpy人工智能
问题:python3.8安装tensorflow2.5.0发现tensorflow和numba两者对应Numpy版本冲突tensorflow-gpu2.5.0requiresnumpy~=1.19.2numba0.58.1requiresnumpy=1.22解决方法:将numba降低版本为0.53pipinstallnumba==0.53再将numpy版本改为1.19.2pipinstallnum
- python3.7安装keras教程_python 3.7 安装 sklearn keras(tf.keras)
weixin_39641103
#1sklearn一般方法网上有很多教程,不再赘述。注意顺序是numpy+mkl,然后scipy的环境,scipy,然后sklearn#2anocondaanaconda原始的环境已经自带了sklearn,这里说一下新建环境(比如创建了一个tensorflow的环境),activatetensorflow2.0,然后condainstallsklearn即可,会帮你把各种需要的库都安装。#kera
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 将本地已有的项目上传到新建的git仓库的方法
10676
将本地已有的一个非git项目上传到新建的git仓库的方法一共有两种。一、克隆+拷贝第一种方法比较简单,直接用把远程仓库拉到本地,然后再把自己本地的项目拷贝到仓库中去。然后push到远程仓库上去即可。此方法适用于本地项目不是一个git仓库的情况。1、首先克隆
[email protected]:yuanmingchen/tensorflow_study.git2、然后复制自己项目的所有文件到
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- 五款BI对比分析
qq_43696218
信息可视化
本文将用一两段话来概括市面上比较常用的五款BI软件,至于究竟哪一款BI软件更适合你,则需要根据自己的情况进行选择了。注意:以下排名不分先后1、FineBIFineBI是一款国产的BI工具,以其本土化做得好和学习教程完善而广受欢迎。它提供了与国产数据库的高适配度和适合中国人使用习惯的图表、指标,使得业务人员能够更轻松地理解和分析数据。FineBI的易用性和强大的数据分析功能使其成为业务人员的得力助手
- OSError: libnccl.so.2: cannot open shared object file: No such file or directory
王小葱鸭
python
linux安装完torch或者tensorflow的gpu版本,安装没问题,但是import就有问题,报错OSError:libnccl.so.2:cannotopensharedobjectfile:Nosuchfileordirectory,是缺少nvidia的ncll,下面介绍解决方法:1安装ncll下载链接https://developer.nvidia.com/nccl/nccl-dow
- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- MacBook Air M1 使用 miniconda 安装python3.11.7 和 tensorflow2.16.1详细 - TensorFlow自学笔记1
青瓷看世界
tensorflowtensorflow人工智能macpython深度学习
1m1mac安装xcode命令工具在Terminal终端执行以下代码:xcode-select--install2下载支持m1芯片arm64的miniconda在miniconda官网,找到下图中保护AppleM1的bash安装包,Miniconda—Anacondadocumentation3安装miniconda在Terminal执行下列代码:1)cd"miniconda下载目录"2)bash
- 机器学习框架巅峰对决:TensorFlow vs. PyTorch vs. Scikit-Learn实战分析
@sinner
技术选型机器学习tensorflowpytorchscikit-learn
1.引言1.1机器学习框架的重要性在机器学习的黄金时代,框架的选择对于开发高效、可扩展的模型至关重要。合适的框架可以极大地提高开发效率,简化模型的构建和训练过程,并支持大规模的模型部署。因此,了解和选择最合适的机器学习框架对于研究人员和工程师来说是一个关键的步骤。1.2三大框架概览:TensorFlow、PyTorch、Scikit-Learn目前,最流行的机器学习框架主要有TensorFlow、
- Tensorflow2.16中的Keras包含哪些层(layers)?层的功能及参数详细解释 -- TensorFlow自学笔记6
青瓷看世界
tensorflowtensorflowkeras人工智能
在Keras中,层(Layer)是构建神经网络的基本组件。Keras提供了多种类型的层,用于处理不同类型的输入数据和执行特定的数学操作。英文版可参考TensorFlow官方文档:Module:tf.keras.layers|TensorFlowv2.16.1一.层的分类1.基本网络层1.1.Dense层用于执行全连接操作;1.2.卷积层Conv1D、Conv2D、Conv3D层,用于执行一维、
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,