【tensorflow1.0学习笔记006】save-restore保存与读取

saver实例代码:

## Save to file
# remember to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name='weights')
b = tf.Variable([[1,2,3]], dtype=tf.float32, name='biases')

init= tf.global_variables_initialize()

saver = tf.train.Saver()

with tf.Session() as sess:
   sess.run(init)
   save_path = saver.save(sess, "my_net/save_net.ckpt")
   print("Save to path: ", save_path)

restore实例代码:

# restore variables
# redefine the same shape and same type for your variables
W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")
b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")

# not need init step

saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess, "my_net/save_net.ckpt")
    print("weights:", sess.run(W))
    print("biases:", sess.run(b))

一次 saver.save() 后可以在文件夹中看到新增的四个文件:
【tensorflow1.0学习笔记006】save-restore保存与读取_第1张图片

checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model.ckpt保存每个变量的取值,此处文件名的写入方式会因不同参数的设置而不同,但加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的。简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

你可能感兴趣的:(深度学习,TensorFlow)