- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- TensorFlow Serving学习笔记3: 组件调用关系
一、整体架构TensorFlowServing采用模块化设计,核心组件包括:Servables:可服务对象(如模型、查找表)Managers:管理Servable生命周期(加载/卸载)Loaders:负责Servable的初始化状态管理Sources:提供新版本Servable的LoaderAspiredVersions:Servable的期望状态集合Core:连接所有组件的核心枢纽APIs:gR
- 【高频考点精讲】前端AI集成实战:从TensorFlow.js到模型部署
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端AI集成实战:从TensorFlow.js到模型部署作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一
- 聚焦OpenVINO与OpenCV颜色通道转换的实践指南
颜色通道顺序问题:OpenVINO模型RGB输入与OpenCVBGR格式的转换在计算机视觉任务中,框架间的颜色通道差异常导致模型推理错误。以下方法解决OpenVINO模型需要RGB输入而OpenCV默认输出BGR的问题。理解核心差异OpenCV的imread()函数遵循BGR通道顺序,源于历史摄像头硬件的数据格式。而OpenVINO等深度学习框架多采用RGB顺序,与TensorFlow/PyTor
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- TensorFlow深度学习模型训练:掌握神经网络的构建与优化
瞎了眼的枸杞
深度学习tensorflow神经网络
引言深度学习是人工智能领域的重要分支,它通过模拟人脑的神经网络结构来解决复杂的数据表示和学习问题。TensorFlow作为目前最受欢迎的深度学习框架之一,为开发者提供了强大的工具和丰富的资源。本文将带你了解如何使用TensorFlow进行深度学习模型的训练和优化。TensorFlow的核心概念什么是TensorFlow?定义:TensorFlow是一个用于数值计算的开源库,特别适合于大规模的机器学
- Tensorflow实现经典CNN网络AlexNet
您懂我意思吧
python开发tensorflowcnn人工智能python
1、概念AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNetClassificationwithDeepConvolutionalNeuralNetworks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。2、AlexNet网络结构由于受限于当时
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- Spring中如何使用AI
Mn孟
spring人工智能java后端
Spring是一个用于构建Java应用程序的开源框架,它可以与各种AI技术集成。要在Spring中使用AI,首先需要选择一种AI技术,如机器学习、自然语言处理等。然后可以使用SpringBoot来构建应用程序,并使用相应的AI框架或库来实现AI功能。例如,可以使用TensorFlow或PyTorch来实现机器学习功能,使用NLTK或spaCy来实现自然语言处理功能。此外,还可以使用SpringCl
- C++(个人学习总结,不断更新......)
一、初识C++1.1C++简介C++是由BjarneStroustrup研发的,在计算机编程语言中,C++兼容了c语言,又增加了面向对象的机制,同时拥有丰富的库,有标准模板库STL以及很多第三方库,STL中有set、map、hash等容器,第三方库中有Boost库、图形库QT、图库像处理库Opencv、机械学习库Tensorflow等,这些库可以为嵌入式开发提供非常大的支持。1.2C++程序编写#
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- python训练Day24 元组和OS模块
小暖星
python训练python开发语言
元组特点:1.有序,可以重复,这一点和列表一样2.元组中的元素不能修改,这一点非常重要,深度学习场景中很多参数、形状定义好了确保后续不能被修改。很多流行的ML/DL库(如TensorFlow,PyTorch,NumPy)在其API中都广泛使用了元组来表示形状、配置等。可以看到,元组最重要的功能是在列表之上,增加了不可修改这个需求元组的创建my_tuple1=(1,2,3)my_tuple2=('a
- TensorFlow:深度学习基础设施的架构哲学与工程实践革新
双囍菜菜
AI深度学习tensorflow架构
TensorFlow:深度学习基础设施的架构哲学与工程实践革新文章目录TensorFlow:深度学习基础设施的架构哲学与工程实践革新一、计算范式革命:从静态图到动态执行的深度架构剖析1.1静态计算图的编译优化体系1.2动态图模式的实现原理1.3混合执行模式的编译原理二、张量计算引擎的深度架构解析2.1运行时核心组件2.2计算图优化技术2.3分布式训练架构三、可微分编程范式的实现奥秘3.1自动微分系
- Python商务数据分析——Python 入门基础知识学习笔记
爱吃代码的小皇冠
python笔记算法数据结构
一、简介1.1Python特性解释型语言:代码无需编译可直接运行,适合快速开发。动态类型:变量类型在运行时确定(如x=1后x="str"仍合法)。面向对象:支持类、对象、继承等特性,代码可复用性强。语法简洁:通过缩进区分代码块,减少括号等冗余符号。1.2应用场景数据分析:Pandas、Numpy等库处理结构化数据。人工智能:TensorFlow、PyTorch构建机器学习模型。Web开发:Djan
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- Cross-stitch Networks for Multi-task Learning 项目教程
童香莺Wyman
Cross-stitchNetworksforMulti-taskLearning项目教程Cross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Network
- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- TensorFlow 安装与 GPU 驱动兼容(h800)
weixin_44719529
tensorflowneo4j人工智能
环境说明TensorFlow安装与GPU驱动兼容CUDA/H800特殊注意事项PyCharm和终端环境变量设置方法测试GPU是否可用的Python脚本#使用TensorFlow2.13在NVIDIAH800上启用GPU加速完整指南在使用TensorFlow进行深度学习训练时,充分利用GPU能力至关重要。本文记录了在Linux环境下使用TensorFlow2.13搭配NVIDIAH800GPU的完整
- 非root用户在服务器(linux-Ubuntu16.04)上安装cuda和cudnn,tensorflow-gpu1.13.1
码小花
模型测试环境搭建
1.准备工作(下载CUDA10.0和cudnn安装包)查看tensorflow和CUDA,cudnn的版本的对应关系,从而选择合适的版本进行下载下载CUDA10.0安装包,点击官网进行下载,根据服务器的具体情况选择对应的版本,如下图所示下载完毕后得到安装包cuda_10.0.130_410.48_linux.run下载cudnn,选择CUDA10.0对应的版本(需要注册登录nvidia账号),点击
- 如何安装Tensorflow和GPU配置
神隐灬
tensorflow学习tensorflow人工智能python
课题组某一台服务器升级后,很多环境丢失了,4块3090的GPU的驱动已安装好,但没有公用的Tensorflow可使用。于是自己鼓捣了一番Tensorflow的安装,等管理员安装公用的环境不知道要到猴年马月……服务器是Linux系统(CentOS),GPU是英伟达公司的3090,已经安装好驱动,可以通过命令看到相关信息:$nvidia-smiTueMay2820:54:092024+--------
- 非 root 用户安装 cuDNN 并配置 TensorFlow 使用 GPU
为非root用户安装cuDNN并配置TensorFlow使用GPU(以CUDA11.5为例)背景说明在科研服务器或非root权限环境下,用户往往无法通过apt或yum安装CUDA/cuDNN。本文以CUDA11.5和cuDNN8.3.3为例,演示如何手动下载并配置cuDNN,使TensorFlow成功识别GPU并启用加速。第一步:确认已安装CUDAnvcc--version示例输出:Cudacom
- 用Tensorflow进行线性回归和逻辑回归(一)
lishaoan77
tensorflowtensorflow线性回归逻辑回归
这一章告诉你如何用TensorFlow构建简单的机器学习系统。第一部分回顾构建机器学习系统的基础特别是讲函数,连续性,可微性。接着我们介绍损失函数,然后讨论机器学习归根于找到复杂的损失函数最小化的点的能力。我们然后讲梯度下降,解释它如何使损失最小。然后简单的讨论自动微分的算法思想。第二节侧重于介绍基于这些数学思想的TensorFlow概念。包括placeholders,scopes,optimiz
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 程序代码篇---ESP32-S3小智固件
Atticus-Orion
深度学习篇程序代码篇上位机知识篇AIEsp32-S3小智
Q1:ESP32-S3小智语音对话系统的整体架构是怎样的?A1:该系统采用“语音采集→唤醒词检测→ASR→NLP→TTS→语音播放”的流水线架构:硬件层:ESP32-S3芯片+麦克风阵列(如INMP441)+扬声器(如MAX98357A)。驱动层:ESP-IDF或Arduino框架提供的I2S、ADC、DAC驱动。算法层:唤醒词检测:基于MicroML(如TensorFlowLiteMicro)。
- faster rcnn预训练模型_Faster-RCNN+TensorFlow 详细训练过程(附github源码)
weixin_39958631
fasterrcnn预训练模型
图片来源于网络图片来源于网络1、训练平台:R53600、RTX2060Super,16G运行内存。2、源码地址:https://github.com/dBeker/Faster-RCNN-TensorFlow-Python33、使用git下载源码,gitclonehttps://github.com/dBeker/Faster-RCNN-TensorFlow-Python3.git项目整体代码结构
- 基于Tensorflow的线性回归
用Tensorflow求逆矩阵用Tensorflow实现矩阵分解用Tensorflow实现线性回归理解线性回归中的损失函数用Tensorflow实现戴明回归(DemingRegression)用Tensorflow实现Lasson回归和岭回归(RidgeRegression)用Tensorflow实现弹性网络回归(ElasticNetRegression)用Tensorflow实现逻辑回归文章目录
- 初识 Tensorflow.js【Plan - June - Week 3】
kuiini
Plan人工智能tensorflow人工智能
一、TensorFlow.jsTensorFlow.js是TensorFlow的JavaScript实现,支持在浏览器或Node.js环境中训练和部署机器学习模型。1、TensorFlow.js能做什么?在浏览器中训练机器学习模型加载并使用已有的模型(TensorFlowSavedModel、Keras模型、TensorFlowHub等)在Node.js环境中训练和部署模型将模型从PythonTe
- tensorflow GPU训练loss与val loss值差距过大问题
LXJSWD
tensorflow人工智能python
问题最近在ubuntugpu上训练模型,训练十轮,结果如下epoch,loss,lr,val_loss200,nan,0.001,nan200,0.002468767808750272,0.001,44.29948425292969201,0.007177405059337616,0.001,49.16984176635742202,0.012423301115632057,0.001,49.30
- python哈夫曼树压缩_哈夫曼树及python实现
七十二便
python哈夫曼树压缩
最近在看《tensorflow实战》中关于RNN一节,里面关于word2vec中涉及到了哈夫曼树,因此在查看了很多博客(文末)介绍后,按自己的理解对概念进行了整理(拼凑了下TXT..),最后自己用python实现Haffuman树的构建及编码。哈夫曼(huffman)树基本概念路径和路径长度:树中一个结点到另一个结点之间的分支构成这两个结点之间的路径;路径上的分枝数目称作路径长度,它等于路径上的结
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo