学习笔记5:自编码器(Autoencoder)

自编码器是一种特殊的神经网络(neural network),它的输出目标(target)就是输入(所以它基本上就是试图将输出重构为输入),由于它不需要任何人工标注,所以可以采用无监督的方式进行训练。

学习笔记5:自编码器(Autoencoder)_第1张图片

自编码器其实也是一种神经网络算法。它与神经网络的区别有:

1、自编码器适合无监督学习,即没有标注,也可以提取高阶特征;

2、输入与输出一致,期望提炼出高阶特征来还原自身数据。

3、单隐含层的自编码器,类似于主成分分析(PCA)


实际作用:

先用自编码器的方法进行无监督的预训练,提取特征并初始化权重,然后使用标注信息进行监督式的训练。

当然不局限于预训练,直接使用自编吗器进行特征提取与分析也是可以的(降维)。


TensorFlow实现

最具代表性的是去噪自编码器。

1、定义一个类,包含:

  • 网络结构,即一些数学公式:激活函数、最终层的复原函数
  • 损失函数
  • 一些调用成员函数:权重初始化、cost及训练、复原、权重的提取
2、加载数据,标准化处理,迭代学习

示例


import numpy as np  
import sklearn.preprocessing as prep  
import tensorflow as tf  
from tensorflow.examples.tutorials.mnist import input_data  
  
  
# 使用一种参数初始化方法xavier initialization,它的特点是会根据某一层网络的输入,输出节点数量自动调整最合适的分布。  
# 如果深度学习模型的权重初始化的太小,那么信号将在每层间传输时逐渐缩小而难以产生作用,但如果初始化得太大,那信号将在每层间传递时逐渐放大并导致发散和失效。  
# Xavier就是让权重满足0均值,同时方差为2/(nin + nout),分布可以用均匀分布,  
def xavier_init(fan_in, fan_out, constant=1):  
    low = -constant * np.sqrt(6.0 / (fan_in + fan_out))  
    high = constant * np.sqrt(6.0 / (fan_in + fan_out))  
    return tf.random_uniform((fan_in, fan_out),  
                             minval=low, maxval=high,  
                             dtype=tf.float32)  
  
  
# 定义去噪自编吗的class,包含一个构建函数__init__(),还有一些常用的成员函数  
  
class AdditiveGaussianNoiseAutoencoder(object):  
    # n_input:输入变量数;n_hidden:隐含层节点数;transfer_function:隐含层的激活函数;scale:高斯噪声系数  
    def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,  
                 optimizer=tf.train.AdamOptimizer(), scale=0.1):  
        self.n_input = n_input  
        self.n_hidden = n_hidden  
        self.transfer = transfer_function  
        self.scale = tf.placeholder(tf.float32)  
        self.training_scale = scale  
        network_weights = self._initialize_weights()  
        self.weights = network_weights  
  
        # 定义网络结构  
        self.x = tf.placeholder(tf.float32, [None, self.n_input])  
        self.hidden = self.transfer(tf.add(tf.matmul(  
            self.x + scale * tf.random_normal((n_input,)),  
            self.weights['w1']), self.weights['b1']))  
        self.reconstruction = tf.add(tf.matmul(self.hidden,  
                                               self.weights['w2']), self.weights['b2'])  
  
        # 定义损失函数,平方误差作为cost  
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(  
            self.reconstruction, self.x), 2.0))  
        self.optimizer = optimizer.minimize(self.cost)  
        init = tf.global_variables_initializer()  
        self.sess = tf.Session()  
        self.sess.run(init)  
  
    # 参数初始化函数定义  
    def _initialize_weights(self):  
        all_weights = dict()  
        all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden))  
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))  
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))  
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))  
        return all_weights  
  
    # 定义计算损失cost及执行一步训练的函数  
    def partial_fit(self, x):  
        cost, opt = self.sess.run((self.cost, self.optimizer),  
                                  feed_dict={self.x: x, self.scale: self.training_scale})  
        return cost  
  
    # 只求损失cost的函数  
    def calc_total_cost(self, x):  
        return self.sess.run(self.cost,  
                             feed_dict={self.x: x, self.scale: self.training_scale})  
  
    # 返回自编码器隐含层的输出结果  
    def transform(self, x):  
        return self.sess.run(self.hidden,  
                             feed_dict={self.x: x, self.scale: self.training_scale})  
  
    # 将隐含层的输出结果作为输入,通过重建层将提取到的高阶特征复原为原始数据  
    def generate(self, hidden=None):  
        if hidden is None:  
            hidden = np.random_normal(size=self.weights["b1"])  
        return self.sess.run(self.reconstruction,  
                             feed_dict={self.hidden: hidden})  
  
    # 整体运行一遍复原过程,包括提取高阶特征和通过高阶特征复原数据  
    def reconstruct(self, x):  
        return self.sess.run(self.construction,  
                             feed_dict={self.x: x, self.scale: self.training_scale})  
  
    # 获取隐含层的权重W1  
    def getWeights(self):  
        return self.sess.run(self.weights['w1'])  
  
    def getBiases(self):  
        return self.sess.run(self.weights['b1'])  
  
  
# 使用我们定义好的类  
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)  
  
  
# 标准化处理  
def standard_scale(x_train, x_test):  
    preprocessor = prep.StandardScaler().fit(x_train)  
    x_train = preprocessor.transform(x_train)  
    x_test = preprocessor.transform(x_test)  
    return x_train, x_test  
  
  
# 获取随机block,不放回抽样  
def get_random_block_from_data(data, batch_size):  
    start_index = np.random.randint(0, len(data) - batch_size)  
    return data[start_index: (start_index + batch_size)]  
  
  
x_train, x_test = standard_scale(mnist.train.images, mnist.test.images)  
n_samples = int(mnist.train.num_examples)  
training_epochs = 20  
batch_size = 128  
display_step = 1  
  
# 创建一个AGN自编吗器的实例  
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,  
                                               n_hidden=200,  
                                               transfer_function=tf.nn.softplus,  
                                               optimizer=tf.train.AdagradOptimizer(learning_rate=0.001),  
                                               scale=0.01)  
  
for epoch in range(training_epochs):  
    avg_cost = 0.  
    total_batch = int(n_samples / batch_size)  
    for i in range(total_batch):  
        batch_xs = get_random_block_from_data(x_train, batch_size)  
        cost = autoencoder.partial_fit(batch_xs)  
        avg_cost += cost / n_samples * batch_size  
  
    if epoch % display_step == 0:  
        print("Epoch:", '%04d' % (epoch + 1), "cost=",  
              "{:.9f}".format(avg_cost))  
  
# 计算测试集整体的cost  
print("Total cost: " + str(autoencoder.calc_total_cost(x_test)))

运行结果:

Epoch: 0001 cost= 30605.952986364
Epoch: 0002 cost= 24782.857529545
Epoch: 0003 cost= 22460.788431818
Epoch: 0004 cost= 22560.084118182
Epoch: 0005 cost= 21883.631884091
Epoch: 0006 cost= 20949.763325000
Epoch: 0007 cost= 18985.162004545
Epoch: 0008 cost= 19601.635181818
Epoch: 0009 cost= 19095.008981818
Epoch: 0010 cost= 17764.048461364
Epoch: 0011 cost= 17395.307373864
Epoch: 0012 cost= 18420.430104545
Epoch: 0013 cost= 16522.635278409
Epoch: 0014 cost= 18391.607369318
Epoch: 0015 cost= 15189.384457955
Epoch: 0016 cost= 16934.368390909
Epoch: 0017 cost= 16483.074007955
Epoch: 0018 cost= 18073.844284091
Epoch: 0019 cost= 16563.650806818
Epoch: 0020 cost= 16148.637540909
Total cost: 1308946.5

你可能感兴趣的:(Machine,Learning学习笔记)