Hive 表分区各种操作-简洁明了

Hive表的分区就是一个目录,分区字段不和表的字段重复。

 

Hive组织表到分区。它是将一个表到基于分区列,如日期,城市和部门的值相关方式。使用分区,很容易对数据进行部分查询。

表或分区是细分成桶,以提供额外的结构,可以使用更高效的查询的数据。桶的工作是基于表的一些列的散列函数值。

创建分区表:

create table tb_partition(id string, name string)
PARTITIONED BY (month string)
row format delimited fields terminated by '\t';

加载数据到hive分区表中

方法一:通过load方式加载

load data local inpath '/home/hadoop/files/nameinfo.txt' overwrite into table tb_partition partition(month='201709');

方法二:insert select 方式

insert overwrite table tb_partition partition(month='201707') select id, name from name;
hive> insert into table tb_partition partition(month='201707') select id, name from name;
Query ID = hadoop_20170918222525_7d074ba1-bff9-44fc-a664-508275175849
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator

方法三:可通过手动上传文件到分区目录,进行加载

hdfs dfs -mkdir /user/hive/warehouse/tb_partition/month=201710
hdfs dfs -put nameinfo.txt /user/hive/warehouse/tb_partition/month=201710

虽然方法三手动上传文件到分区目录,但是查询表的时候是查询不到数据的,需要更新元数据信息。

 

更新源数据的两种方法:

方法一:msck repair table 表名

hive> msck repair table tb_partition;
OK
Partitions not in metastore:    tb_partition:month=201710
Repair: Added partition to metastore tb_partition:month=201710
Time taken: 0.265 seconds, Fetched: 2 row(s)

方法二:alter table tb_partition add partition(month='201708');

hive> alter table tb_partition add partition(month='201708');
OK
Time taken: 0.126 seconds

查询表数据:

hive> select *from tb_partition ;
OK
1       Lily    201708
2       Andy    201708
3       Tom     201708
1       Lily    201709
2       Andy    201709
3       Tom     201709
1       Lily    201710
2       Andy    201710
3       Tom     201710
Time taken: 0.161 seconds, Fetched: 9 row(s)

 

查询分区信息: show partitions 表名

hive> show partitions tb_partition;
OK
month=201708
month=201709
month=201710
Time taken: 0.154 seconds, Fetched: 3 row(s)

 

查看hdfs中的文件结构

[hadoop@node11 files]$ hdfs dfs -ls /user/hive/warehouse/tb_partition/
17/09/18 22:33:25 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 4 items
drwxr-xr-x   - hadoop supergroup          0 2017-09-18 22:25 /user/hive/warehouse/tb_partition/month=201707
drwxr-xr-x   - hadoop supergroup          0 2017-09-18 22:15 /user/hive/warehouse/tb_partition/month=201708
drwxr-xr-x   - hadoop supergroup          0 2017-09-18 05:55 /user/hive/warehouse/tb_partition/month=201709
drwxr-xr-x   - hadoop supergroup          0 2017-09-18 22:03 /user/hive/warehouse/tb_partition/month=201710

创建多级分区

create table tb_mul_partition(id string, name string)
PARTITIONED BY (month string, code string)
row format delimited fields terminated by '\t';

加载数据:

load data local inpath '/home/hadoop/files/nameinfo.txt' into table tb_mul_partition partition(month='201709',code='10000'); 
load data local inpath '/home/hadoop/files/nameinfo.txt' into table tb_mul_partition partition(month='201710',code='10000'); 

查询数据:

hive> select *From tb_mul_partition where code='10000';
OK
1       Lily    201709  10000
2       Andy    201709  10000
3       Tom     201709  10000
1       Lily    201710  10000
2       Andy    201710  10000
3       Tom     201710  10000
Time taken: 0.208 seconds, Fetched: 6 row(s)

测试以下指定一个分区:

hive> load data local inpath '/home/hadoop/files/nameinfo.txt' into table tb_mul_partition partition(month='201708'); 
FAILED: SemanticException [Error 10006]: Line 1:95 Partition not found ''201708''
hive> load data local inpath '/home/hadoop/files/nameinfo.txt' into table tb_mul_partition partition(code='20000'); 
FAILED: SemanticException [Error 10006]: Line 1:95 Partition not found ''20000''

创建是多级分区,指定一个分区是不可以的。

查看一下在hdfs中存储的结构:

[hadoop@node11 files]$ hdfs dfs -ls /user/hive/warehouse/tb_mul_partition/month=201710
drwxr-xr-x   - hadoop supergroup          0 2017-09-18 22:36 /user/hive/warehouse/tb_mul_partition/month=201710/code=10000

动态分区

回顾一下之前的向分区插入数据

insert overwrite table tb_partition partition(month='201707') select id, name from name;

这里需要指定具体的分区信息‘201707’,这里通过动态操作,向表里插入数据。

新建表:

hive> create table tb_copy_partition like tb_partition;
OK
Time taken: 0.118 seconds

查看一下表结构:

hive> desc tb_copy_partition;
OK
id                      string                                      
name                    string                                      
month                   string                                      
                 
# Partition Information          
# col_name              data_type               comment             
                 
month                   string                                      
Time taken: 0.127 seconds, Fetched: 8 row(s

接下来通过动态操作,向tb_copy_partitioon里面插入数据,

insert into table tb_copy_partition partition(month) select id, name, month from tb_partition; 

这里注意需要将分区字段month放到最后。

hive> insert into table tb_copy_partition partition(month) select id, name, month from tb_partition;
FAILED: SemanticException [Error 10096]: Dynamic partition strict mode requires at least one static partition column. To turn this off set hive.exec.dynamic.partition.mode=nonstrict

这里报错,使用动态加载,需要 To turn this off set hive.exec.dynamic.partition.mode=nonstrict

那根据错误信息设置一下

hive> set hive.exec.dynamic.partition.mode=nonstrict;

查询设置信息,设置成功

hive> set hive.exec.dynamic.partition.mode;
hive.exec.dynamic.partition.mode=nonstrict

重新执行:

hive> insert into table tb_copy_partition partition(month) select id, name, month from tb_partition;
Query ID = hadoop_20170918230808_0bf202da-279f-4df3-a153-ece0e457c905
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1505785612206_0002, Tracking URL = http://node11:8088/proxy/application_1505785612206_0002/
Kill Command = /home/hadoop/app/hadoop-2.6.0-cdh5.10.0/bin/hadoop job  -kill job_1505785612206_0002
Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 0
2017-09-18 23:08:13,698 Stage-1 map = 0%,  reduce = 0%
2017-09-18 23:08:23,896 Stage-1 map = 50%,  reduce = 0%, Cumulative CPU 1.94 sec
2017-09-18 23:08:27,172 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.63 sec
MapReduce Total cumulative CPU time: 3 seconds 630 msec
Ended Job = job_1505785612206_0002
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to: hdfs://cluster1/user/hive/warehouse/tb_copy_partition/.hive-staging_hive_2017-09-18_23-08-01_475_7542657053989652968-1/-ext-10000
Loading data to table default.tb_copy_partition partition (month=null)
         Time taken for load dynamic partitions : 381
        Loading partition {month=201709}
        Loading partition {month=201708}
        Loading partition {month=201710}
        Loading partition {month=201707}
         Time taken for adding to write entity : 0
Partition default.tb_copy_partition{month=201707} stats: [numFiles=1, numRows=3, totalSize=20, rawDataSize=17]
Partition default.tb_copy_partition{month=201708} stats: [numFiles=1, numRows=3, totalSize=20, rawDataSize=17]
Partition default.tb_copy_partition{month=201709} stats: [numFiles=1, numRows=3, totalSize=20, rawDataSize=17]
Partition default.tb_copy_partition{month=201710} stats: [numFiles=1, numRows=3, totalSize=20, rawDataSize=17]
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 2   Cumulative CPU: 3.63 sec   HDFS Read: 8926 HDFS Write: 382 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 630 msec
OK
Time taken: 28.932 second

查询一下数据:

hive> select *From tb_copy_partition;
OK
1       Lily    201707
2       Andy    201707
3       Tom     201707
1       Lily    201708
2       Andy    201708
3       Tom     201708
1       Lily    201709
2       Andy    201709
3       Tom     201709
1       Lily    201710
2       Andy    201710
3       Tom     201710
Time taken: 0.121 seconds, Fetched: 12 row(s)

你可能感兴趣的:(hive分区,桶,大数据~Hive)