- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- Redis+Caffeine双层缓存策略对比与实践指南
浅沫云归
后端技术栈小结RedisCaffeine缓存
Redis+Caffeine双层缓存策略对比与实践指南在高并发场景下,缓存是提升系统性能和并发处理能力的关键手段。常见的缓存方案包括远程缓存(如Redis)和本地缓存(如Caffeine)。单层缓存各有优劣,结合两者优势的双层缓存架构已成为生产环境中的最佳实践。本文将基于SpringBoot,从方案对比分析出发,深入探讨Redis、本地Caffeine与双层缓存的实现与性能差异,并给出选型建议与实
- spring boot + caffeine使用
月光一族吖
springbootspringjava
一、Caffeine缓存背景Caffeine是一个高性能、可扩展的Java缓存库,由Google的BenManes开发。Caffeine基于ConcurrentHashMap设计,采用了近似LRU(LeastRecentlyUsed,最近最少使用)算法,以实现高速缓存淘汰策略。Caffeine广泛应用于各类Java项目中,作为一种提高数据读取性能的优秀解决方案。二、Caffeine缓存优点与缺点优
- 两级缓存 Caffeine + Redis 架构:原理、实现与实践
大只鹅
缓存redis架构
一、前言在高性能服务架构设计里,缓存是关键环节。常规做法是将热点数据存于Redis/MemCache等远程缓存,缓存未命中时再查数据库,以此提升访问速度、降低数据库压力。随着发展,架构有了改进,部分场景下单纯远程缓存不够,需结合本地缓存(如Guavacache、Caffeine),形成本地缓存(一级缓存)+远程缓存(二级缓存)的两级缓存架构,进一步提升程序响应与服务性能,其基础访问流程如下(暂不考
- Ehcache、Caffeine、Spring Cache、Redis、J2Cache、Memcached 和 Guava Cache 的主要区别
MonkeyKing.sun
springredismemcached
主流缓存技术Ehcache、Caffeine、SpringCache、Redis、J2Cache、Memcached和GuavaCache的主要区别,涵盖其架构、功能、适用场景和优缺点等方面:Ehcache类型:本地缓存(JVM内存缓存)特点:轻量级,运行在JVM内部,易于集成到Java应用中。支持堆内、堆外和磁盘缓存,适合处理中小型数据集。提供丰富的缓存配置,如TTL(生存时间)、TTI(空闲时
- 《高并发系统性能优化三板斧:缓存 + 异步 + 限流》
猕员桃
10篇关于分布式和高并发性能优化缓存
高并发系统性能优化三板斧:缓存+异步+限流引言在互联网应用的高并发场景下,系统性能面临巨大挑战。以某电商平台会员活动为例,活动期间瞬时QPS可达10万+,若未进行有效优化,服务器将迅速崩溃。本文从缓存、异步、限流三个核心维度,结合实际案例详细解析高并发系统的性能优化策略,并分享全链路压测与问题定位的实战经验。一、缓存策略分层:从本地到分布式的立体防护1.1本地缓存选型与实战(Caffeine)本地
- 2.6 Spring Boot缓存实战:Redis与Caffeine性能对比
SpringBoot缓存实战:Redis与Caffeine深度性能对比一、缓存技术选型核心指标维度Redis(分布式)Caffeine(本地)数据存储位置独立内存服务器应用进程堆内存数据一致性强一致(集群版)最终一致(需额外同步)网络开销存在TCP/IP通信无网络延迟数据容量支持TB级存储受限于JVM堆大小数据结构支持5种核心数据结构仅Key-Value结构持久化能力RDB/AOF需结合其他存储二
- 深入实践Caffeine+Redis两级缓存架构:从原理到高可用设计
搬砖的小熊猫
缓存redis架构
一、为何需要两级缓存架构?在分布式系统中,Redis作为分布式缓存已广泛应用。但当系统面临超高并发读取(如热点商品详情页访问)或超低延迟要求(如金融行情数据推送)时,纯远程缓存面临两大瓶颈:网络IO开销:每次Redis访问需10-50ms的网络延迟带宽瓶颈:单节点Redis吞吐量上限约10万QPS通过引入Caffeine本地缓存作为一级缓存,Redis作为二级缓存,可实现:命中未命中命中未命中客户
- python opencv rgb_opencv-python的RGB与BGR互转方式
weixin_39798497
pythonopencvrgb
一、格式转换opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。在Python中,将RGB顺序的图像转成BGR顺序,需要调整channeldimension的各颜色通道顺序。方法1:img=cv2.imread("001.jpg
- caffe之利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
xunan003
深度学习caffe
一、前沿写这篇博文,是因为一开始在做《21天学习caffe》第6天6.4练习题1的时候看着自己搜索的博文,在不理解其根本的情况下做的,结果显然是错的。在接下来阅读完源代码之后,在第10天学习完caffemodelzoo之后,明白了其中原理,反过来再去做那个习题,一开始在网上搜索并没有完完整整解释整个过程的一篇博文,而是写的不知所云,本着我们初学者互相共享的精神,也方便自己查阅,特详细写一下,将自己
- caffe安装:基于anaconda3---python3.6, linux, 仅CPU
喵酱ooo
目标检测caffeanaconda3python3.6linuxCPU
caffe安装:基于anaconda3---python3.6,linux,仅CPUcaffe安装安装Anaconda3下载caffe配置caffe的Makefile.config安装libboost(基于python3.6)的库编译caffecaffe安装安装Anaconda3下载:Anaconda3-5.0.1-Linux-x86_64.sh默认路径安装(最终安装位置为/home/usenam
- ubuntu 编译caffe makefile.config
AI算法网奇
win/ubuntu
这个是我以前总结的:sudoapt-getinstall-ylibopencv-devpython-opencvsudoapt-getinstall-ybuild-essentialcmakegitpkg-configsudoapt-getinstall-ylibatlas-base-devsudoapt-getinstall-ylibgflags-devlibgoogle-glog-devlib
- caffe中Makefile.config详解
《一夜飘零》
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).#USE_CUDNN:=1"CuDNN是NVIDIA专门
- 【性能飙升】Caffeine缓存框架:SpringBoot的高性能秘籍!
码农Q!
程序员JavaIT缓存springbootspringwindows开发语言javalist
高性能Java本地缓存Caffeine框架介绍及在SpringBoot中的使用代码加详解1.引包importcom.github.benmanes.caffeine.cache.Cache;importcom.github.benmanes.caffeine.cache.Caffeine;importorg.springframework.beans.factory.annotation.Auto
- 一站式讲解本地缓存Caffeine
想用offer打牌
后台缓存缓存
文章目录theme:condensed-night-purple引言本地缓存的必要性多级缓存访问流程使用Caffeine作为本地缓存️添加**SpringCache和Guava依赖**配置Caffeine缓存启用缓存使用缓存注解总结❤️theme:condensed-night-purple引言上次我们讲了本地缓存guava,那么有没有比它更加优秀的本地缓存呢?有的,兄弟,有的。这次我们来讲本地
- 开放词汇检测分割YOLOE从pytorch到caffe
wangxiaobei2017
深度学习训练与移植pytorchcaffe人工智能
开放词汇检测分割YOLOE从pytorch到caffe0.前沿开放词汇检测的概念CLIP模型1.YOLOE环境配置1.1虚拟环境1.2YOLOE模型推理测试1.2.1文本提示检测和分割测试1.2.2无提示检测和分割2.YOLOE网络结构分析2.1网络结构概述2.2可重参数化区域-文本对齐(Re-parameterizableregion-textalignment:RepRTA)2.3语义激活视觉
- 本地缓存Caffeine的基本使用
海光之蓝
工具类spring
1.本地缓存有ehcache,guavacache,caffein这几种常用的实现,下面介绍caffeine在springboot中的使用caffeine官网:github-caffeinjsr-107缓存规范与spring的对照:jsr-107缓存规范与spring的对照caffeine-plus:caffeine-plus单独使用:2.添加依赖com.github.ben-manes.caff
- Web 架构之缓存策略实战:从本地缓存到分布式缓存
互联网搬砖工老肖
web架构原力计划前端架构缓存
文章目录一、思维导图二、正文内容(一)本地缓存1.简介2.常见实现3.使用场景4.优缺点(二)分布式缓存1.简介2.常见实现3.使用场景4.优缺点5.缓存问题及解决方案三、总结一、思维导图缓存策略实战本地缓存分布式缓存简介常见实现使用场景优缺点GuavaCacheCaffeine简介常见实现使用场景优缺点RedisMemcached缓存穿透缓存击穿缓存雪崩解决方案解决方案解决方案二、正文内容(一)
- 解锁Java多级缓存:性能飞升的秘密武器
bxlj_jcj
缓存面试架构缓存架构java面试
一、引言文末有彩蛋在当今高并发、低延迟的应用场景中,传统的单级缓存策略往往难以满足性能需求。随着系统规模扩大,数据访问的瓶颈逐渐显现,如何高效管理缓存成为开发者面临的重大挑战。多级缓存架构应运而生,通过分层缓存设计(如本地缓存+分布式缓存+后端存储),显著减少网络开销、降低数据库压力,成为提升Java应用性能的“秘密武器”。本文将深入剖析多级缓存的核心理念,结合Caffeine、Redis等主流技
- Spring Boot缓存组件Ehcache、Caffeine、Redis、Hazelcast
一只帆記
SpringBoot缓存springbootredis
一、SpringBoot缓存架构核心SpringBoot通过spring-boot-starter-cache提供统一的缓存抽象层:业务代码CacheAbstractionCacheManagerCacheImplementationEhcacheCaffeineRedisHazelcast二、主流缓存工具深度对比特性EhcacheCaffeineRedisHazelcast类型本地缓存本地缓存分
- 【Redis】热点key问题,的原因和处理,一致性哈希,删除大key的方法
{⌐■_■}
redisredis哈希算法数据库
热点Key指单个Key被高并发访问(如爆款商品),导致Redis压力骤增。解决方案应针对“单个Key高并发”:分片缓存:将热点Key分散到不同Redis节点(如按一致性哈希算法分片)。本地缓存:在应用层缓存热点数据(如Caffeine),减少Redis压力。增加缓存副本:为热点数据增加缓存副本,将热点数据复制到多个缓存节点上,分散访问压力。(例如,使用Redis的主从复制,将热点数据存储在多个从节
- 在Windows系统下安装caffe
sunmingliu
最近,在怼着球面卷积神经网络源码看,虽然不出意外的看傻了,但caffe的安装还是需要记录一下的。一开始我是想在Linux系统下实现的,毕竟一开始我把电脑一大块空间给了Linux系统。于是我先颠颠的照着网上的教程把anaconda先安装了。anaconda在Linux下的安装还顺道下了一个COCO数据集,官网没法正常打开,就找到了一个不需要的下载方法,贴一个链接:简单的MSCOCO数据集下载方法然后
- 深度学习FPGA开发方式
jack_201316888
FPGAAI
https://blog.csdn.net/weixin_35729512/article/details/79763952FPGA深度学习的方向概述传统的CNN(Tensorflow、caffe)是在GPU、CPU上面进行的,但因为其功耗高、散热不好、价格昂贵。但是在单纯的FPGA这类芯片上进行深度学习类的算法,往往开发难度大,开发周期漫长,不适合CNN算法的实现。CNN算法的步骤划分,训练(P
- Caffeine 深度解析:从核心原理到生产实践
Pasregret
缓存缓存java面试
Caffeine深度解析:从核心原理到生产实践一、Caffeine核心定位与架构设计1.核心能力矩阵深度解析Caffeine作为Java领域高性能本地缓存库,其设计目标围绕高吞吐量、低延迟、高效内存管理展开,核心能力可从技术特性与业务价值两个维度拆解:缓存策略先进性WindowTinyLfu回收算法:结合时间窗口(Window)与TinyLfu频率统计,相比传统LRU提升10%-15%命中率,尤其
- 多级缓存架构深度解析:从设计原理到生产实践
Pasregret
缓存缓存架构
多级缓存架构深度解析:从设计原理到生产实践一、多级缓存架构核心定位与设计原则1.架构分层与角色定位多级缓存通过分层存储、流量削峰、数据分级实现性能与成本的平衡,典型三层架构如下:层级代表组件存储介质数据特征命中目标成本级别一级缓存Caffeine/Guava本地堆内存热数据(访问量前10%)70%+高二级缓存Redis远程内存温数据(访问量20%-30%)25%+中三级缓存MySQL/ES磁盘/S
- 搭建Caffeine+Redis多级缓存机制
moxiaoran5753
缓存redis数据库
本地缓存的简单实现方案有HashMap,CucurrentHashMap,成熟的本地缓存方案有Guava与Caffeine,企业级应用推荐下面说下两者的区别1.核心异同对比特性GuavaCacheCaffeine诞生背景GoogleGuava库的一部分(2011年)基于GuavaCache重构的现代缓存库(2015+)性能中等(锁竞争较多)极高(优化并发设计,吞吐量提升5~10倍)内存管理基于LR
- 3.JVM调优与内存管理
zizisuo
java
目录一、缓存场景下的内存管理核心挑战堆内缓存与堆外缓存的取舍•堆内缓存(Caffeine/Guava)的GC压力分析•堆外缓存(EhcacheOffheap/MapDB)的内存泄漏防护•混合缓存架构的性能与资源平衡高并发下的内存分配优化•TLAB(Thread-LocalAllocationBuffer)与缓存对象分配效率•大对象(缓存Value)直接进入老年代的策略•年轻代与老年代比例调优(避免
- OpenCV学习笔记:使用OpenCV的DNN模块调用Caffe进行人脸识别
EbCoder
机器学习-深度学习
在计算机视觉和图像处理领域,人脸识别是一个重要的任务。OpenCV是一个广泛使用的开源计算机视觉库,它提供了强大的功能来处理图像和视频。OpenCV的DNN(深度神经网络)模块允许我们使用已经训练好的深度学习模型进行图像识别任务。本文将介绍如何使用OpenCV的DNN模块调用Caffe框架训练的人脸识别模型。首先,我们需要安装OpenCV和Caffe。确保您已经正确安装了这两个库,并且已经配置好了
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- SpringBoot+SpringCache实现两级缓存(Redis+Caffeine)
xfgg
java
1.缓存、两级缓存1.1内容说明Springcache:主要包含springcache定义的接口方法说明和注解中的属性说明springboot+springcache:rediscache实现中的缺陷caffeine简介springboot+springcache实现两级缓存使用缓存时的流程图1.2SpingCachespringcache是spring-context包中提供的基于注解方式使用的
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc