- 知识图谱neo4j—利用python进行知识入库
gcl_code
知识图谱neo4j知识图谱python
知识图谱neo4j—利用python进行知识入库知识图谱—利用python进行知识入库作为一个写sql出生的菜鸡,在这里分享一下去年11月到12月之间研究的关于知识图谱的课题相关知识,由于客户的原因最终该项目没有继续进行下去,但是有些经验还是可以跟大家分享一下,理论知识就不说了,很多人已经有类似的分享了,这边分享一个我自己用python写的导入neo4j的脚本,能达到1秒入库4000条左右记录数据
- 【AI日记】24.10.30 做项目的一些前期准备工作
AI完全体
AI日记人工智能机器学习自然语言处理langchain日记读书学习资源
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】工作工作1内容:看AI大佬访谈B站地址:SamAltman最新5月播客长篇访谈|@All-In播客2024.5.11时间:1.5小时评估:继续工作2内容:思考如何开始自己的RAG项目时间:0.5小时决定:采用搭积木的方法来做自己的RAG项目。从最基础的开始,不断学习各种RAG和NLP相关的技术,然后不断加入到自己的项目中,而不
- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 基于医疗知识图谱的问答系统 基于知识图谱的多轮问答 附完整代码数据详细教程
计算机毕设论文
深度学习-自然语言处理nlp医疗知识知识图谱Neo4j多轮问答
这个项目已实现的功能:1.闲聊类的单论对话2.基于知识图谱的多轮问答数据链接:链接:https://pan.baidu.com/s/1oPr1m8aaIeoMu53OIEULPg提取码:fh39一、项目来源由于之前用Rasa构建过对话系统,因此一直想脱离Rasa这个开源框架,从底层开始构建一个可以实现相似功能的对话系统,毕竟框架用的再溜,都不如自己做一遍。恰巧在Rasa群里看到了前辈分享的一个项目
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- AI —— 文字生成图片的逻辑
鱼不知海
AI写作AI作画
事情的起因是我在做一个自用软件时,需要测试文字生成图像的功能。于是就对现在能使用的ai大模型去做了一些尝试。输入几组我的描述性文字其中的一张图片令我大为震撼。(师妹师兄温酒毛驴)问题大家应该可以发现,一位图像人物的下半身时有问题的。同时从人的逻辑上,这种图缺少内核逻辑。在NLP的成熟度如此高的情况下,对描述性文字进行逻辑上的重构并不是太麻烦的事情。豆包扩充文字(在一个宁静的日子里,师兄与师妹并辔而
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 产品经理学习——AI产品
Li灿灿
产品经理学习人工智能
本篇文章,主要是针对目前不同类型AI公司的产品经理职责和AI产品经理的模型进行介绍。AI产品分类AI产品分为软件型和软硬件结合型,软件型的AI产品主要是具备理解、推理和决策能力的AI,如NLP(自然语言处理)系统或者创造类,创作型内容如音乐、艺术和写作等。软硬结合型AI产品一般和传统领域相关,如医疗AI、教育AI和零售AI等。有些公司是纯粹的AI公司,对应的特点是专注于做底层的算法,做芯片技术,纯
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 教育小程序+AI出题:如何通过自然语言处理技术提升题目质量
万岳科技系统开发
人工智能小程序自然语言处理
随着教育科技的飞速发展,教育小程序已经成为学生与教师之间互动的重要平台之一。与此同时,人工智能(AI)和自然语言处理(NLP)技术的应用正在不断推动教育内容的智能化。特别是在AI出题系统中,如何通过NLP技术提升题目质量,成为教育领域中的一个重要课题。本文将介绍如何利用自然语言处理技术,通过AI出题系统自动生成高质量、个性化的题目,提升教育小程序的交互性与教学效果。一、自然语言处理(NLP)概述自
- LangChain开发【NL2SQL】应用(few-shot优化)
向羿燃
LangChain开发及生态langchainai人工智能数据分析
前言之前发布的博客LangGraph开发Agent智能体应用【NL2SQL】-CSDN博客,留了一个问题,对于相对复杂的sql(leetcode中等难度的sql题),gpt4o就力不从心了。这篇文章来讲一下优化什么是few-shot使用这些少量的、调整后的样本对预训练模型进行微调其实就是给LLM少量示例关于few-shot的研究:https://medium.com/ubiai-nlp/step-
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
小赖同学啊
python人工智能自动化测试(apppcAPI)人工智能自然语言处理gpt
在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例:1.自动生成测试用例AI大模型可以根据需求文档或用户故事自动生成测试用例。代码示例(使用OpenAIGPTAPI):importopenai#设置OpenAIAPI密钥openai.api_key="your-openai-api-key"#
- 清影2.0(AI视频生成)技术浅析(二):自然语言处理
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能音视频AIGC深度学习机器学习
清影2.0(AI视频生成)中的自然语言处理(NLP)技术是其核心组件之一,负责将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成过程。一、基本原理1.目标清影2.0的NLP技术旨在将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成。具体目标包括:1.深度语义理解:理解文本的语义、情感、意图等深层次信息。2.上下文关联:捕捉文本中词语之间、句子之间
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 使用OpenAI API进行文本分类标注
dgay_hua
人工智能python
技术背景介绍文本分类标注(Tagging)是一种非常有用的技术,可以对文档进行分类,例如情感分析、语言检测、风格判断、主题识别等。这项技术在自然语言处理(NLP)领域中有广泛的应用,例如社交媒体监控、客户反馈分析和自动化客服系统等。在本文中,我们将使用OpenAI的API,通过LangChain工具来进行文本分类标注。我们将展示如何定义分类函数和模式(schema),并通过实际代码演示实现文本分类
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- 26、深度学习-自学之路-NLP自然语言处理-理解加程序,怎么把现实的词翻译给机器识别。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、怎么能让机器能够理解我们的语言呢,我们可以利用神经网络干很多的事情,那么我们是不是也可以用神经元做自然语言处理呢,现在很多的实际应用已经说明了这个问题,可以这么做。那我们考虑一下该怎么做,首先我们应该把我们现实中的每一个单词都用一个词向量来进行表示:importnumpyasnponehots={}onehots['cat']=np.array([1,0,0,0])onehots['the']
- 27、深度学习-自学之路-NLP自然语言处理-做一个简单的项目识别一组电影评论,来判断电影评论是积极的,还是消极的。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、如果我们要做这个项目,第一步我们要做的就是需要有对应的训练数据集。这里提供两个数据集,一个是原始评论数据集《reviews.txt》,以及对应的评论是消极还是积极的数据集《labels.txt》,下面的程序就是找到这两个数据集,并把对应的数据集的内容分别赋值给reviews和labelsdefpretty_print_review_and_label(i):print(labels[i]+"\
- DeepSeek与核货宝订货系统的协同进化:智能商业范式重构
多用户商城系统
订货系统源码deepseek人工智能核货宝订货系统
数据处理与分析方面深度数据洞察:利用Deepseek强大的智能数据挖掘与分析能力,处理核货宝订货系统中的海量订单数据、客户数据、商品数据等。比如分析不同地区、不同时间、不同客户群体的订货偏好和趋势,为批发订货企业制定精准的采购、库存和销售策略提供依据。建立行业知识图谱:Deepseek可基于核货宝系统的数据及行业信息,构建批发行业知识图谱,清晰呈现企业、产品、客户、供应商等之间的关系和关联信息,帮
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D