HDU 动态规划(46道题目)



                              HDU 动态规划(46道题目)
原作者网址:http://www.cppblog.com/doer-xee/archive/2010/01/28/102629.html#Post
先标记 以后慢慢学习。

Robberies http: // acm.hdu.edu.cn/showproblem.php?pid=2955 
背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多少钱 最脑残的是把总的概率以为是抢N家银行的概率之和… 把状态转移方程写成了f[j]=max{f[j],f[j-q[i].v]+q[i].money}(f[j]表示在概率j之下能抢的大洋);

正确的方程是:f[j]=max(f[j],f[j-q[i].money]*q[i].v) 其中,f[j]表示抢j块大洋的最大的逃脱概率,条件是f[j-q[i].money]可达,也就是之前抢劫过;
始化为:f[0]=1,其余初始化为-1 (抢0块大洋肯定不被抓嘛)

最大报销额 http: // acm.hdu.edu.cn/showproblem.php?pid=1864 
又一个背包问题,对于每张发票,要么报销,要么不报销,0-1背包,张数即为背包;
转移方程:f[j]=max(f[j],f[j-1]+v[i]);
恶心地方:有这样的输入数据 3 A:100 A:200 A:300

最大连续子序列 http: // acm.hdu.edu.cn/showproblem.php?pid=1231
状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
也可以写成:
Max=a[0];
Current=0;
for(i=0;i {
if(Current<0)
Current=a[i];
else
Current+=a[i];
if(Current>Max)
Max=Current;
}

max sum http: // acm.hdu.edu.cn/showproblem.php?pid=1003 
同上,最大连续子序列 

Largest Rectangle http: // acm.hdu.edu.cn/showproblem.php?pid=1506
对于每一块木板,Area=height[i]*(j-k+1) 其中,j<=x<=k,height[x]>=height[i];找j,k成为关键,一般方法肯定超时,利用动态规划,如果它左边高度大于等于它本身,那么它左边的左边界一定满足这个性质,再从这个边界的左边迭代下去
for(i=1;i<=n;i++)

while(a[l[i]-1]>=a[i])
l[i]=l[l[i]-1];

}

for(i=n;i>=1;i--)
{
while(a[r[i]+1]>=a[i])
r[i]=r[r[i]+1];
}

City Game http: // acm.hdu.edu.cn/showproblem.php?pid=1505
1506的加强版,把2维转换化成以每一行底,组成的最大面积;(注意处理连续与间断的情况);

Bone Collector http: // acm.hdu.edu.cn/showproblem.php?pid=2602 
简单0-1背包,状态方程:f[j]=max(f[j],f[j-v[i]]+w[i])

Super Jumping http: // acm.hdu.edu.cn/showproblem.php?pid=1087 
最大递增子段和,状态方程:sum[j]=max{sum[i]}+a[j]; 其中,0<=i<=j,a[i]
命运http: // acm.hdu.edu.cn/showproblem.php?pid=2571
状态方程:sum[i][j]=max{sum[i-1][j],sum[i][k]}+v[i][j];其中1<=k<=j-1,且k是j的因子 

Monkey And Banana http: // acm.hdu.edu.cn/showproblem.php?pid=1069
状态方程:f[j]=max{f[i]}+v[j];其中,0<=i<=j,w[i]
Big Event  in HDU http: // acm.hdu.edu.cn/showproblem.php?pid=1171 
一维背包,逐个考虑每个物品带来的影响,对于第i个物品: if(f[j-v[i]]==0) f[j]=0;
其中,j为逆序循环,且j>=v[i] 

数塔http: // acm.hdu.edu.cn/showproblem.php?pid=2084
自底向上:dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+v[i][j]; 

免费馅饼http: // acm.hdu.edu.cn/showproblem.php?pid=1176
简单数塔
自底向上计算:dp[i][j]=max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1])+v[i][j];处理边界

I Need A Offer http: // acm.hdu.edu.cn/showproblem.php?pid=1203
简单0-1背包,题目要求的是至少收到一份Offer的最大概率,我们得到得不到的最小概率即可,状态转移方程:f[j]=min(f[j],f[j-v[i]]*w[i]);其中,w[i]表示得不到的概率,(1-f[j])为花费j元得到Offer的最大概率 

FATE http: // acm.hdu.edu.cn/showproblem.php?pid=2159 
二维完全背包,第二层跟第三层的要顺序循环;(0-1背包逆序循环);状态可理解为,在背包属性为 {m(忍耐度), s(杀怪个数)} 里最多能得到的经验值,之前的背包牺牲体积,这个背包牺牲忍耐度跟个数
注意: 最后扫的时候 外层循环为忍耐度,内层循环为杀怪个数,因为题目要求出剩余忍耐度最大,没有约束杀怪个数,一旦找到经验加满的即为最优解;
状态转移方程为: f[j][k]=max(f[j][k],f[j-v[i]][k-1]+w[i]); w[i]表示杀死第i个怪所得的经验值,v[i]表示消耗的忍耐度

How To Type http: // acm.hdu.edu.cn/showproblem.php?pid=2577 
用两个a,b数组分别记录Caps Lock开与关时打印第i个字母的最少操作步骤;
而对于第i个字母的大小写还要分开讨论:
Ch[i]为小写: a[i]=min(a[i-1]+1,b[i-1]+2);不开灯直接字母,开灯则先关灯再按字母,最后保持不开灯; b[i]=min(a[i-1]+2,b[i-1]+2);不开灯则先按字母再开灯,开灯则Shift+字母(比关灯,按字母再开灯节省步数),最后保持开灯;
Ch[i]为大写: a[i]=min(a[i-1]+2,b[i-1]+2); b[i]=min(a[i-1]+2,b[i-1]+1)

最后,b[len-1]++,关灯嘛O(∩_∩)O~ 

Coins http: // acm.hdu.edu.cn/showproblem.php?pid=2844
类似于HDU1171 Big Event In HDU,一维DP,可达可不达 

Beans http: // acm.hdu.edu.cn/showproblem.php?pid=2845 
横竖分别求一下不连续的最大子段和;
状态方程: Sum[i]=max(sum[j])+a[i];其中,0<=j
Largest Submatrix http: // acm.hdu.edu.cn/showproblem.php?pid=2870 
枚举a,b,c 最大完全子矩阵,类似于HDU1505 1506 

Matrix Swapping II http: // acm.hdu.edu.cn/showproblem.php?pid=2830 
最大完全子矩阵,以第i行为底,可以构成的最大矩阵,因为该题可以任意移动列,所以只要大于等于height[i]的都可以移动到一起,求出height>=height[i]的个数即可,这里用hash+滚动,先求出height[i]出现的次数,然后逆序扫一遍hash[i]+=hash[i+1]; 

最少拦截系统http: // acm.hdu.edu.cn/showproblem.php?pid=1257
两种做法,一是贪心,从后往前贪;二是DP;
if(v[i]>max{dp[j]}) (0<=j dp[len++]=v[i]; 

Common Subsequence http: // acm.hdu.edu.cn/showproblem.php?pid=1159 
经典DP,最长公共子序列
Len[i][j]={len[i-1][j-1]+1,(a[i]==b[j]); max(len[i-1][j],len[i][j-1])}
初始化的优化: 
for(i=0;i for(j=0;j len[i][j]=0;
for(i=1;i<=a;i++) 
for(j=1;j<=b;j++) 
if(ch1[i-1]==ch2[j-1]) 
len[i][j]=len[i-1][j-1]+1;
else 
len[i][j]=max(len[i-1][j],len[i][j-1]); 

★ 搬寝室http: // acm.hdu.edu.cn/showproblem.php?pid=1421 
状态Dp[i][j]为前i件物品选j对的最优解
当i=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2
当i>j*2时,Dp[i][j] = min(Dp[i-1][j],Dp[i-2][j-1]+(w[j]-w[j-1])^2) 

★ Humble Numbers http: // acm.hdu.edu.cn/showproblem.php?pid=1058 
如果一个数是Humble Number,那么它的2倍,3倍,5倍,7倍仍然是Humble Number
定义F[i]为第i个Humble Number
F[n]=min(2*f[i],3*f[j],5*f[k],7*f[L]), i,j,k,L在被选择后相互移动
(通过此题理解到数组有序特性) 

★ Doing Homework Again http: // acm.hdu.edu.cn/showproblem.php?pid=1789 
这题为贪心,经典题;
切题角度,对于每个任务要么在截至日期前完成要么被扣分;所以考虑每个人物的完成情况即可;由于每天只能完成一个任务,所以优先考虑分值较大的任务,看看该任务能不能完成,只要能完成,即使提前完成,占了其他任务的完成日期也没关系,因为当前任务的分值最大嘛,而对于能完成的任务能拖多久就拖多久,以便腾出更多时间完成其他任务; 

How Many Ways http: // acm.hdu.edu.cn/showproblem.php?pid=1978 
两种D法,一是对于当前的点,那些点可达;二是当前点可达那些点;
明显第二种方法高,因为第一种方法有一些没必要的尝试;
Dp[i][j]+=Dp[ii][jj]; (map[ii][jj]>=两点的曼哈顿距离)
值得优化的地方,每两点的曼哈顿距离可能不止求一次,所以预处理一下直接读取 

珍惜现在 感恩生活http: // acm.hdu.edu.cn/showproblem.php?pid=2191 
每个物品最多可取n件,多重背包;
利用二进制思想,把每种物品转化为几件物品,然后就成为了0-1背包 

Piggy-Bank http: // acm.hdu.edu.cn/showproblem.php?pid=1114 
完全背包;常规背包是求最大值,这题求最小值;
只需要修改一下初始化,f[0]=0,其他赋值为+∞即可;
状态转移方程:f[i][V]=max{f[i-1][V],f[i-1][V-k*v[i]]+k*w[i]},其中0<=k*v[i]<=V

★ Max Sum Plus Plus http: // acm.hdu.edu.cn/showproblem.php?pid=1024
1. 对于前n个数, 以v[n]为底取m段: 
当n==m时,Sum[m][n]=Sum[m-1][n-1]+v[n],第n个数独立成段;
当n>m时, Sum[m][n]=max{Sum[m-1][k],Sum[m][n-1]}+v[n]; 其中,m-1<=k 2. 空间的优化:
通过状态方程可以看出,取m段时,只与取m-1段有关,所以用滚动数组来节省空间

FatMouse’s Speed http: // acm.hdu.edu.cn/showproblem.php?pid=1160 
要求:体重严格递增,速度严格递减,原始顺序不定
按体重或者速度排序,即顺数固定后转化为最长上升子序列问题
Dp[i]表示为以第i项为底构成的最长子序列,Dp[i]=max(dp[j])+1,其中0<=jw[j]&&s[i]
Cstructing Roads http: // acm.hdu.edu.cn/showproblem.php?pid=1025 
以p或者r按升序排列以后,问题转化为最长上升子序列
题目数据量比较大,只能采取二分查找,n*log(n)的算法
用一个数组记录dp[]记录最长的子序列,len表示长度,如果a[i]>dp[len], 则接在后面,len++; 否则在dp[]中找到最大的j,满足dp[j]
FatMouse Chees http: // acm.hdu.edu.cn/showproblem.php?pid=1078 
Dp思想,用记忆化搜索;简单题,处理好边界; 

To the Max http: // acm.hdu.edu.cn/showproblem.php?pid=1081
最大子矩阵
把多维转化为一维的最大连续子序列;(HDU1003) 

龟兔赛跑http: // acm.hdu.edu.cn/showproblem.php?pid=2059 
未总结 

★ Employment Planning http: // acm.hdu.edu.cn/showproblem.php?pid=1158 
状态表示: Dp[i][j]为前i个月的留j个人的最优解;Num[i]<=j<=Max{Num[i]};
j>Max{Num[i]}之后无意义,无谓的浪费 记Max_n=Max{Num[i]};
Dp[i-1]中的每一项都可能影响到Dp[i],即使Num[i-1]< 所以利用Dp[i-1]中的所有项去求Dp[i];
对于Num[i]<=k<=Max_n, 当k 当k>j时, 解雇 然后求出最小值
Dp[i][j]=min{Dp[i-1][k…Max_n]+(招聘,解雇,工资); 

Dividing http: // acm.hdu.edu.cn/showproblem.php?pid=1059 
一维Dp Sum为偶数的时候判断Dp[sum/2]可不可达 

Human Gene Factions http: // acm.hdu.edu.cn/showproblem.php?pid=1080 
状态转移方程:
f[i][j]=Max(f[i-1][j-1]+r[a[i]][b[j]], f[i][j-1]+r[‘-‘][b[j]],f[i-1][j]+r[a[i]][‘-‘]);

★ Doing Homework http: // acm.hdu.edu.cn/showproblem.php?pid=1074 
这题用到位压缩;
那么任务所有的状态有2^n-1种
状态方程为:Dp[next]=min{Dp[k]+i的罚时} 其中,next=k+(1<>i的奇偶性决定状态k
具体实现为: 对每种状态遍历n项任务,如果第i项没有完成,则计算出Dp[next]的最优解 

Free DIY Tour http: // acm.hdu.edu.cn/showproblem.php?pid=1224 
简单的数塔Dp,考察的是细节的处理;
Dp[i]=Max{Dp[j]}+v[i] 其中j->i为通路;
v[n+1]有没有初始化,Dp数组有没有初始化
这题不能用想当然的”最长路”来解决,这好像是个NP问题 解决不了的


重温世界杯http: // acm.hdu.edu.cn/showproblem.php?pid=1422 
这题的状态不难理解,状态表示为,如果上一个城市剩下的钱不为负,也就是没有被赶回杭电,则再考虑它对下一个城市的影响;如果上一个城市剩下的前加上当前城市的前大于当前城市的生活费,那么Dp[i]=Dp[i-1]+1;
值得注意的而是这题的数据为100000;不可能以每个城市为起点来一次Dp,时间复杂度为n^2;足已超时;
我是这样处理的,在保存的数据后面再接上1…n的数据,这样扫描一遍的复杂度为n;再加一个优化,当Dp[i]==n时,也就是能全部游完所有城市的时候,直接break;

Pearls http: // acm.hdu.edu.cn/showproblem.php?pid=1300 
Dp[i]=min{Dp[j]+V}, 0<=j
Zipper http: // acm.hdu.edu.cn/showproblem.php?pid=1501
Dp[i][j]= 

★Fast Food http: // acm.hdu.edu.cn/showproblem.php?pid=1227
这里需要一个常识:在i到j取一点使它到区间每一点的距离之和最小,这一点为(i+j)/2用图形即可证明;
Dp[i][j]=max{Dp[i-1][k]+cost[k+1][j] 其中,(i-1)<=k
Warcraft http: // acm.hdu.edu.cn/showproblem.php?pid=3008
比赛的时候这道DP卡到我网络中心停电!!! 卧槽~ 
因为你没有回血效应,所以你挂掉的时间是一定的;
用Dp[i][j]表示第i秒剩余j个单位的MP时怪物所剩的血量; 注意必须是剩余,也就是说,初始化的时候,DP[0][100]=100; 其他Dp[0]状态都不合法,因为没有开战的时候你的MP是满的
状态转移方程为:
Dp[i+1][j-sk[k].mp+x]=min(Dp[i+1][j-sk[k].mp+x],Dp[i][j]+sk[k].at; 释放第K种技能,物理攻击可以看成是at=1,mp=0 的魔法;

Regular Words http: // acm.hdu.edu.cn/showproblem.php?pid=1502 
F[a][b][c]=F[a-1][b][c]+F[a][b-1][c]+F[a][b][c-1];
a>=b>=c; 

Advanced Fruits http: // acm.hdu.edu.cn/showproblem.php?pid=1503 
最长公共子序列的加强版 

#  re: HDU 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】 2011-06-23 18:45 |  quality directory submission
To make money in the web, your product pages need to be detected among top results for specialized keys and goods. To realize that, you require the most experienced cheap directory submission service and optimization stuff. Professionals are able to turn visitors into clients. 

                              HDU 动态规划(46道题目)
原作者网址:http://www.cppblog.com/doer-xee/archive/2010/01/28/102629.html#Post
先标记 以后慢慢学习。

Robberies http: // acm.hdu.edu.cn/showproblem.php?pid=2955 
背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多少钱 最脑残的是把总的概率以为是抢N家银行的概率之和… 把状态转移方程写成了f[j]=max{f[j],f[j-q[i].v]+q[i].money}(f[j]表示在概率j之下能抢的大洋);

正确的方程是:f[j]=max(f[j],f[j-q[i].money]*q[i].v) 其中,f[j]表示抢j块大洋的最大的逃脱概率,条件是f[j-q[i].money]可达,也就是之前抢劫过;
始化为:f[0]=1,其余初始化为-1 (抢0块大洋肯定不被抓嘛)

最大报销额 http: // acm.hdu.edu.cn/showproblem.php?pid=1864 
又一个背包问题,对于每张发票,要么报销,要么不报销,0-1背包,张数即为背包;
转移方程:f[j]=max(f[j],f[j-1]+v[i]);
恶心地方:有这样的输入数据 3 A:100 A:200 A:300

最大连续子序列 http: // acm.hdu.edu.cn/showproblem.php?pid=1231
状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
也可以写成:
Max=a[0];
Current=0;
for(i=0;i {
if(Current<0)
Current=a[i];
else
Current+=a[i];
if(Current>Max)
Max=Current;
}

max sum http: // acm.hdu.edu.cn/showproblem.php?pid=1003 
同上,最大连续子序列 

Largest Rectangle http: // acm.hdu.edu.cn/showproblem.php?pid=1506
对于每一块木板,Area=height[i]*(j-k+1) 其中,j<=x<=k,height[x]>=height[i];找j,k成为关键,一般方法肯定超时,利用动态规划,如果它左边高度大于等于它本身,那么它左边的左边界一定满足这个性质,再从这个边界的左边迭代下去
for(i=1;i<=n;i++)

while(a[l[i]-1]>=a[i])
l[i]=l[l[i]-1];

}

for(i=n;i>=1;i--)
{
while(a[r[i]+1]>=a[i])
r[i]=r[r[i]+1];
}

City Game http: // acm.hdu.edu.cn/showproblem.php?pid=1505
1506的加强版,把2维转换化成以每一行底,组成的最大面积;(注意处理连续与间断的情况);

Bone Collector http: // acm.hdu.edu.cn/showproblem.php?pid=2602 
简单0-1背包,状态方程:f[j]=max(f[j],f[j-v[i]]+w[i])

Super Jumping http: // acm.hdu.edu.cn/showproblem.php?pid=1087 
最大递增子段和,状态方程:sum[j]=max{sum[i]}+a[j]; 其中,0<=i<=j,a[i]
命运http: // acm.hdu.edu.cn/showproblem.php?pid=2571
状态方程:sum[i][j]=max{sum[i-1][j],sum[i][k]}+v[i][j];其中1<=k<=j-1,且k是j的因子 

Monkey And Banana http: // acm.hdu.edu.cn/showproblem.php?pid=1069
状态方程:f[j]=max{f[i]}+v[j];其中,0<=i<=j,w[i]
Big Event  in HDU http: // acm.hdu.edu.cn/showproblem.php?pid=1171 
一维背包,逐个考虑每个物品带来的影响,对于第i个物品: if(f[j-v[i]]==0) f[j]=0;
其中,j为逆序循环,且j>=v[i] 

数塔http: // acm.hdu.edu.cn/showproblem.php?pid=2084
自底向上:dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+v[i][j]; 

免费馅饼http: // acm.hdu.edu.cn/showproblem.php?pid=1176
简单数塔
自底向上计算:dp[i][j]=max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1])+v[i][j];处理边界

I Need A Offer http: // acm.hdu.edu.cn/showproblem.php?pid=1203
简单0-1背包,题目要求的是至少收到一份Offer的最大概率,我们得到得不到的最小概率即可,状态转移方程:f[j]=min(f[j],f[j-v[i]]*w[i]);其中,w[i]表示得不到的概率,(1-f[j])为花费j元得到Offer的最大概率 

FATE http: // acm.hdu.edu.cn/showproblem.php?pid=2159 
二维完全背包,第二层跟第三层的要顺序循环;(0-1背包逆序循环);状态可理解为,在背包属性为 {m(忍耐度), s(杀怪个数)} 里最多能得到的经验值,之前的背包牺牲体积,这个背包牺牲忍耐度跟个数
注意: 最后扫的时候 外层循环为忍耐度,内层循环为杀怪个数,因为题目要求出剩余忍耐度最大,没有约束杀怪个数,一旦找到经验加满的即为最优解;
状态转移方程为: f[j][k]=max(f[j][k],f[j-v[i]][k-1]+w[i]); w[i]表示杀死第i个怪所得的经验值,v[i]表示消耗的忍耐度

How To Type http: // acm.hdu.edu.cn/showproblem.php?pid=2577 
用两个a,b数组分别记录Caps Lock开与关时打印第i个字母的最少操作步骤;
而对于第i个字母的大小写还要分开讨论:
Ch[i]为小写: a[i]=min(a[i-1]+1,b[i-1]+2);不开灯直接字母,开灯则先关灯再按字母,最后保持不开灯; b[i]=min(a[i-1]+2,b[i-1]+2);不开灯则先按字母再开灯,开灯则Shift+字母(比关灯,按字母再开灯节省步数),最后保持开灯;
Ch[i]为大写: a[i]=min(a[i-1]+2,b[i-1]+2); b[i]=min(a[i-1]+2,b[i-1]+1)

最后,b[len-1]++,关灯嘛O(∩_∩)O~ 

Coins http: // acm.hdu.edu.cn/showproblem.php?pid=2844
类似于HDU1171 Big Event In HDU,一维DP,可达可不达 

Beans http: // acm.hdu.edu.cn/showproblem.php?pid=2845 
横竖分别求一下不连续的最大子段和;
状态方程: Sum[i]=max(sum[j])+a[i];其中,0<=j
Largest Submatrix http: // acm.hdu.edu.cn/showproblem.php?pid=2870 
枚举a,b,c 最大完全子矩阵,类似于HDU1505 1506 

Matrix Swapping II http: // acm.hdu.edu.cn/showproblem.php?pid=2830 
最大完全子矩阵,以第i行为底,可以构成的最大矩阵,因为该题可以任意移动列,所以只要大于等于height[i]的都可以移动到一起,求出height>=height[i]的个数即可,这里用hash+滚动,先求出height[i]出现的次数,然后逆序扫一遍hash[i]+=hash[i+1]; 

最少拦截系统http: // acm.hdu.edu.cn/showproblem.php?pid=1257
两种做法,一是贪心,从后往前贪;二是DP;
if(v[i]>max{dp[j]}) (0<=j dp[len++]=v[i]; 

Common Subsequence http: // acm.hdu.edu.cn/showproblem.php?pid=1159 
经典DP,最长公共子序列
Len[i][j]={len[i-1][j-1]+1,(a[i]==b[j]); max(len[i-1][j],len[i][j-1])}
初始化的优化: 
for(i=0;i for(j=0;j len[i][j]=0;
for(i=1;i<=a;i++) 
for(j=1;j<=b;j++) 
if(ch1[i-1]==ch2[j-1]) 
len[i][j]=len[i-1][j-1]+1;
else 
len[i][j]=max(len[i-1][j],len[i][j-1]); 

★ 搬寝室http: // acm.hdu.edu.cn/showproblem.php?pid=1421 
状态Dp[i][j]为前i件物品选j对的最优解
当i=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2
当i>j*2时,Dp[i][j] = min(Dp[i-1][j],Dp[i-2][j-1]+(w[j]-w[j-1])^2) 

★ Humble Numbers http: // acm.hdu.edu.cn/showproblem.php?pid=1058 
如果一个数是Humble Number,那么它的2倍,3倍,5倍,7倍仍然是Humble Number
定义F[i]为第i个Humble Number
F[n]=min(2*f[i],3*f[j],5*f[k],7*f[L]), i,j,k,L在被选择后相互移动
(通过此题理解到数组有序特性) 

★ Doing Homework Again http: // acm.hdu.edu.cn/showproblem.php?pid=1789 
这题为贪心,经典题;
切题角度,对于每个任务要么在截至日期前完成要么被扣分;所以考虑每个人物的完成情况即可;由于每天只能完成一个任务,所以优先考虑分值较大的任务,看看该任务能不能完成,只要能完成,即使提前完成,占了其他任务的完成日期也没关系,因为当前任务的分值最大嘛,而对于能完成的任务能拖多久就拖多久,以便腾出更多时间完成其他任务; 

How Many Ways http: // acm.hdu.edu.cn/showproblem.php?pid=1978 
两种D法,一是对于当前的点,那些点可达;二是当前点可达那些点;
明显第二种方法高,因为第一种方法有一些没必要的尝试;
Dp[i][j]+=Dp[ii][jj]; (map[ii][jj]>=两点的曼哈顿距离)
值得优化的地方,每两点的曼哈顿距离可能不止求一次,所以预处理一下直接读取 

珍惜现在 感恩生活http: // acm.hdu.edu.cn/showproblem.php?pid=2191 
每个物品最多可取n件,多重背包;
利用二进制思想,把每种物品转化为几件物品,然后就成为了0-1背包 

Piggy-Bank http: // acm.hdu.edu.cn/showproblem.php?pid=1114 
完全背包;常规背包是求最大值,这题求最小值;
只需要修改一下初始化,f[0]=0,其他赋值为+∞即可;
状态转移方程:f[i][V]=max{f[i-1][V],f[i-1][V-k*v[i]]+k*w[i]},其中0<=k*v[i]<=V

★ Max Sum Plus Plus http: // acm.hdu.edu.cn/showproblem.php?pid=1024
1. 对于前n个数, 以v[n]为底取m段: 
当n==m时,Sum[m][n]=Sum[m-1][n-1]+v[n],第n个数独立成段;
当n>m时, Sum[m][n]=max{Sum[m-1][k],Sum[m][n-1]}+v[n]; 其中,m-1<=k 2. 空间的优化:
通过状态方程可以看出,取m段时,只与取m-1段有关,所以用滚动数组来节省空间

FatMouse’s Speed http: // acm.hdu.edu.cn/showproblem.php?pid=1160 
要求:体重严格递增,速度严格递减,原始顺序不定
按体重或者速度排序,即顺数固定后转化为最长上升子序列问题
Dp[i]表示为以第i项为底构成的最长子序列,Dp[i]=max(dp[j])+1,其中0<=jw[j]&&s[i]
Cstructing Roads http: // acm.hdu.edu.cn/showproblem.php?pid=1025 
以p或者r按升序排列以后,问题转化为最长上升子序列
题目数据量比较大,只能采取二分查找,n*log(n)的算法
用一个数组记录dp[]记录最长的子序列,len表示长度,如果a[i]>dp[len], 则接在后面,len++; 否则在dp[]中找到最大的j,满足dp[j]
FatMouse Chees http: // acm.hdu.edu.cn/showproblem.php?pid=1078 
Dp思想,用记忆化搜索;简单题,处理好边界; 

To the Max http: // acm.hdu.edu.cn/showproblem.php?pid=1081
最大子矩阵
把多维转化为一维的最大连续子序列;(HDU1003) 

龟兔赛跑http: // acm.hdu.edu.cn/showproblem.php?pid=2059 
未总结 

★ Employment Planning http: // acm.hdu.edu.cn/showproblem.php?pid=1158 
状态表示: Dp[i][j]为前i个月的留j个人的最优解;Num[i]<=j<=Max{Num[i]};
j>Max{Num[i]}之后无意义,无谓的浪费 记Max_n=Max{Num[i]};
Dp[i-1]中的每一项都可能影响到Dp[i],即使Num[i-1]< 所以利用Dp[i-1]中的所有项去求Dp[i];
对于Num[i]<=k<=Max_n, 当k 当k>j时, 解雇 然后求出最小值
Dp[i][j]=min{Dp[i-1][k…Max_n]+(招聘,解雇,工资); 

Dividing http: // acm.hdu.edu.cn/showproblem.php?pid=1059 
一维Dp Sum为偶数的时候判断Dp[sum/2]可不可达 

Human Gene Factions http: // acm.hdu.edu.cn/showproblem.php?pid=1080 
状态转移方程:
f[i][j]=Max(f[i-1][j-1]+r[a[i]][b[j]], f[i][j-1]+r[‘-‘][b[j]],f[i-1][j]+r[a[i]][‘-‘]);

★ Doing Homework http: // acm.hdu.edu.cn/showproblem.php?pid=1074 
这题用到位压缩;
那么任务所有的状态有2^n-1种
状态方程为:Dp[next]=min{Dp[k]+i的罚时} 其中,next=k+(1<>i的奇偶性决定状态k
具体实现为: 对每种状态遍历n项任务,如果第i项没有完成,则计算出Dp[next]的最优解 

Free DIY Tour http: // acm.hdu.edu.cn/showproblem.php?pid=1224 
简单的数塔Dp,考察的是细节的处理;
Dp[i]=Max{Dp[j]}+v[i] 其中j->i为通路;
v[n+1]有没有初始化,Dp数组有没有初始化
这题不能用想当然的”最长路”来解决,这好像是个NP问题 解决不了的


重温世界杯http: // acm.hdu.edu.cn/showproblem.php?pid=1422 
这题的状态不难理解,状态表示为,如果上一个城市剩下的钱不为负,也就是没有被赶回杭电,则再考虑它对下一个城市的影响;如果上一个城市剩下的前加上当前城市的前大于当前城市的生活费,那么Dp[i]=Dp[i-1]+1;
值得注意的而是这题的数据为100000;不可能以每个城市为起点来一次Dp,时间复杂度为n^2;足已超时;
我是这样处理的,在保存的数据后面再接上1…n的数据,这样扫描一遍的复杂度为n;再加一个优化,当Dp[i]==n时,也就是能全部游完所有城市的时候,直接break;

Pearls http: // acm.hdu.edu.cn/showproblem.php?pid=1300 
Dp[i]=min{Dp[j]+V}, 0<=j
Zipper http: // acm.hdu.edu.cn/showproblem.php?pid=1501
Dp[i][j]= 

★Fast Food http: // acm.hdu.edu.cn/showproblem.php?pid=1227
这里需要一个常识:在i到j取一点使它到区间每一点的距离之和最小,这一点为(i+j)/2用图形即可证明;
Dp[i][j]=max{Dp[i-1][k]+cost[k+1][j] 其中,(i-1)<=k
Warcraft http: // acm.hdu.edu.cn/showproblem.php?pid=3008
比赛的时候这道DP卡到我网络中心停电!!! 卧槽~ 
因为你没有回血效应,所以你挂掉的时间是一定的;
用Dp[i][j]表示第i秒剩余j个单位的MP时怪物所剩的血量; 注意必须是剩余,也就是说,初始化的时候,DP[0][100]=100; 其他Dp[0]状态都不合法,因为没有开战的时候你的MP是满的
状态转移方程为:
Dp[i+1][j-sk[k].mp+x]=min(Dp[i+1][j-sk[k].mp+x],Dp[i][j]+sk[k].at; 释放第K种技能,物理攻击可以看成是at=1,mp=0 的魔法;

Regular Words http: // acm.hdu.edu.cn/showproblem.php?pid=1502 
F[a][b][c]=F[a-1][b][c]+F[a][b-1][c]+F[a][b][c-1];
a>=b>=c; 

Advanced Fruits http: // acm.hdu.edu.cn/showproblem.php?pid=1503 
最长公共子序列的加强版 

#  re: HDU 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】 2011-06-23 18:45 |  quality directory submission
To make money in the web, your product pages need to be detected among top results for specialized keys and goods. To realize that, you require the most experienced cheap directory submission service and optimization stuff. Professionals are able to turn visitors into clients. 

你可能感兴趣的:(动态规划DP)