- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- Caffeine 与 Guava Cache
雨季里的向日葵
java
一、概要1.1背景在项目开发中,为提升系统性能,减少IO开销,本地缓存是必不可少的。最常见的本地缓存是Guava和Caffeine,Caffeine是基于GoogleGuavaCache设计经验改进的结果,相较于Guava在性能和命中率上更具有效率。1.2应用场景愿意消耗一些内存空间来提升速度预料到某些键会被多次查询缓存中存放的数据总量不会超出内存容量二、GuavaCache2.1GuavaCac
- OSError: [WinError 126] 找不到指定的模块---caffe2_detectron_ops_gpu.dll
努力的小柚
python运行问题pythonpytorch
代码复现记录:问题:OSError:[WinError126]找不到指定的模块。Errorloading"C:\Anaconda\Anaconda3\envs\TIN\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll"oroneofitsdependencies.在搜索很多关于无法查找到caffe2_detectron_ops_gpu
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- Linux下Caffe、Docker、Tensorflow、PyTorch环境搭建(CentOS 7)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:模型的训练、测试、部署都可以通过Docker环境完成,环境问题会更少。1.CUDA8.0安装CUDA8.0Configenvvariables#CUDAPATHexportPATH="/usr/local/cuda-8.0/bin:$PATH"#CUDALDLIBRARY_PATHexportLD_LIBRARY_PATH="/us
- JVM级缓存本地缓存Caffeine
旺仔爱Java
JVM专题jvmJVM缓存本地缓存CaffeineGuavaCache
JVM级缓存本地缓存Caffeine和GuavaCache前言一、创建缓存的代码逻辑二、Caffeine的优化方面淘汰算法W-TinyLFU三、Caffeine的业务使用总结前言最新的Java面试题,技术栈涉及Java基础、集合、多线程、Mysql、分布式、Spring全家桶、MyBatis、Dubbo、缓存、消息队列、Linux…等等,会持续更新。一、创建缓存的代码逻辑Caffeine:publ
- 面试redis篇-04缓存雪崩
卡搜偶
缓存面试redis
原理缓存雪崩:是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。解决方案:给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性(哨兵模式、集群模式)给缓存业务添加降级限流策略(ngxin或springcloudgateway)给业务添加多级缓存(Guava或Caffeine)问答面试官:什么是缓存雪崩?怎么解决?回答:缓存雪崩意思是设
- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- 解决:源码安装caffe时遇到libcudnn.so: file not recognized问题
Gracie丹妮
参考教程(19条消息)ubuntu16.04下Detectron+caffe2(Pytorch)安装配置过程_张家坎的博客-CSDN博客_caffe2_detectron_ops_gpu.dllhttps://blog.csdn.net/u014236392/article/details/81117287安装caffe2执行sudomakeinstall之后遇到如下问题:/home/Xdn/cu
- 进场 行礼 问候 退场
东方芭蕾Lily
1.当听到响铃声,按编号排队依次进入考场。tips:面带微笑,优雅自信且有礼貌的边看着考试官边跑到准备问好的位置。步伐轻盈像一阵风样,到位置站好一位脚,保持挺拔向上体态。小仙女就是你们。2.行礼问候Examier:(考试官)GillianMccafferyGoodmorning/afternoongirlsGoodmorning/afrernoonmadamorMs.MccafferyQuesti
- YOLOv5独家改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
AI小怪兽
YOLOv5原创自研YOLOcaffe目标检测深度学习人工智能
本文独家改进:一种超轻量高效动态上采样DySample,具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv5网络中的nn.Upsample在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。收录YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.html全网独家首发创新(原创),适合paper!!!2024年计算
- caffez转ncnn,及环境配置
宁静深远
软件安装
一、安装ncnn1、安装protobuf(a)、gitclonehttps://github.com/google/protobuf(b)、自动生成configure配置文件,运行:./autogen.sh(c)、配置环境:./configure(d)、编译源代码:make(e)、安装:sudomakeinstall(f)、刷新动态库:sudoldconfig2、安装ncnn(a)、mkdirco
- 最新姿态估计研究进展
a微风掠过
最新姿态估计研究进展自上而下:就是先检测包含人的框,即humanproposal,然后对框子中的人进行姿态估计。一般RCNN(区域CNN就是这个思路)自下而上:先检测keypoint,然后根据热力图、点与点之间连接的概率,根据图论知识,基于PAF(部分亲和字段)将关键点连接起来,将关键点分组到人。1、CMU:openpose研究多人的姿态估计运行环境:caffe自下而上,关键点被分组到人的实例时间
- 智慧云智能教育考试平台展示
barry200890
springbootvue考试javavue.js小程序
智慧云智能教育平台项目简介技术架构1.1后端技术栈:*基于SpringBoot+MybatisPlus+Shiro+mysql5.7+redis+websocket构建.*使用jdk1.8的新特性如:caffeine缓存,lambda表达式.1.2前端技术:*Vue*Vuex*Vxe-Table(文档地址:https://gitee.com/xuliangzhan_admin/vxe-table)
- what is SSD|Single Shot MultiBox Detector
Woooooooooooooo
文章摘选自多篇文章,仅用于学习,在此表示感谢,若有侵权请联系,感谢论文下载地址:https://arxiv.org/abs/1512.02325论文代码:https://github.com/weiliu89/caffe/tree/ssd省去了区域建议网络,直接使用不同尺度featuremap中的cell得到priodbox(和anchor类似),利用卷积可以直接得到box的回归和score而不需
- caffe中的参考模型
雨住多一横
RCNNmode_reference_rcnn_ilsvrc13l.pngcaffenet用于Flickrstyle数据集model_finetune_flickr_style.pngAlexNetmodel_alexnet.pnggooglenetmodel_googlenet.pngcaffenetmodel_reference_caffenet.png
- RT-DETR算法优化改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
AI小怪兽
RT-DETR魔术师算法caffe目标检测YOLO深度学习人工智能
本文独家改进:一种超轻量高效动态上采样DySample,具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv8网络中的nn.Upsample在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR
- 「性能提升」扩展 Spring Cache 支持多级缓存
冷冷zz
为什么多级缓存缓存的引入是现在大部分系统所必须考虑的redis作为常用中间件,虽然我们一般业务系统(毕竟业务量有限)不会遇到如下图在随着data-size的增大和数据结构的复杂的造成性能下降,但网络IO消耗会成为整个调用链路中不可忽视的部分。尤其在微服务架构中,一次调用往往会涉及多次调用例如pigoauth2.0的client认证Caffeine来自未来的本地内存缓存,性能比如常见的内存缓存实现性
- Spring Cache
duration~
spring-bootspringjava后端
目录标题SpringCache1介绍2常用注解3入门SpringCache1介绍SpringCache是一个框架,实现了基于注解的缓存功能,只需要简单地加一个注解,就能实现缓存功能。SpringCache提供了一层抽象,底层可以切换不同的缓存实现,例如:EHCacheCaffeineRedis(常用)起步依赖:org.springframework.bootspring-boot-starter-
- Caffeine与Spring cache的各种注解操作
500了
springjava后端
前言Caffeine是一个基于Java8的进程内缓存框架,它使用乐观锁技术来提高并发吞吐量,并被誉为最快的缓存之一。Caffeine是内存型缓存,即缓存与调用者属于同一个应用,具体地说是属于同一个JVM。它的设计目标是提供高性能、高命中率以及低内存占用的本地缓存解决方案,被描述为GuavaCache的加强版和“新一代缓存”。关于Caffeine的使用,其提供了多种灵活的配置选项:自动加载数据:可以
- 缓存组件Caffeine的使用
月月大王
Java#工具类缓存
caffeine是一个高性能的缓存组件,在需要缓存数据,但数据量不算太大,不想引入redis的时候,caffeine就是一个不错的选择。可以把caffeine理解为一个简单的redis。1、导入依赖com.github.ben-manes.caffeinecaffeine2.9.3导入是要注意版本,最开始我用的版本是3.1.1,不过启动是的时候会报错,这是因为我用的是jdk1.8,需要降低一下版本
- Makefile.config
walkMAN_aholic
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).USE_CUDNN:=1#CPU-onlyswitch(
- 缓存Caffeine之W-TinyLFU淘汰策略
georgesnoopy
guava缓存java淘汰策略Caffeine
我们常见的缓存是基于内存的缓存,但是单机的内存是有限的,不能让缓存数据撑爆内存,所有需要缓存淘汰机制。https://mp.csdn.net/editor/html/115872837中大概说明了LRU的缓存淘汰机制,以及基于LRU的著名实现guavacache。除了LRU淘汰策略外,其是常见的还有FIFO以及LFU,只是说目前用的最多的是LRU。LRULRU记录了缓存中数据项的访问时间,在缓存数
- Caffeine史上最快的内存缓存
奇遇少年
缓存java
引言在现代的Web应用程序中,缓存是提升性能,减少数据库负载,加快响应速度的关键技术之一。SpringBoot作为一个简化Spring应用开发的框架,提供了与多种缓存技术集成的支持。Caffeine是一个高性能,灵活的缓存库,它可以作为本地缓存在Java应用中广泛使用。本文将详细介绍如何在SpringBoot项目中集成Caffeine缓存,并通过一个实例来展示它的使用。什么是Caffeine缓存?
- 如何解决caffe和video-caffe不能使用cudnn8编译的问题
Arnold-FY-Chen
video-caffe深度学习Caffevideo-caffecaffe深度学习cudnn8cudnn
因为caffe之类的代码很久不更新了,只支持到了使用cudnn7.x,在使用了cudnn8的环境下编译caffe或video-caffe时,会在src/caffe/layers/cudnn_conv_layer.cpp等文件里出错:error:identifier"CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT"isundefinederror:iden
- Redis 6.0 客户端缓存
极简博客
javaredis
不难发现,我们经常将Redis作为系统的缓存服务,但你有没有发现。在我们每次操作Redis时,都需要发送网络请求。这样就避免不了网络的开销。但如何解决这个问题呢?我们引入了本地缓存来解决此问题。查询逻辑从先前的直接查询转变为:先通过查询本地缓存,不存在再去远程查找然后设置到本地缓存-适用于分布式客户端缓存。有没有感觉像我们使用过的本地缓存Guava、Caffeine等一样?有啥特别的?这里Redi
- [图像算法]-(yolov5.train)-GPU架构中的半精度fp16与单精度fp32计算
蒸饺与白茶
GPU架构中的半精度与单精度计算 由于项目原因,我们需要对darknet中卷积层进行优化,然而对于像caffe或者darknet这类深度学习框架来说,都已经将卷积运算转换成了矩阵乘法,从而可以方便调用cublas库函数和cudnn里tiling过的矩阵乘。 CUDA在推出7.5的时候提出了可以计算16位浮点数据的新特性。定义了两种新的数据类型half和half2.之前有师弟已经DEMO过半精度
- caffe搭建深度神经网络
A异乡人_7a44
利用Caffe进行深度神经网络训练第一步需要搞懂几个重要文件:solver.prototxttrain_val.prototxttrain.shsolver.prototxtsolver这个文件主要存放模型训练所用到的一些超参数:net:=指定待训练模型结构文件,即train_val.prototxttest_interval:=测试间隔,即每隔多少次迭代进行一次测试test_initializa
- deep-visualization-toolbox可视化安装
2014wzy
caffe框架
运行环境:Linux+caffe步骤:Step0:Compilemasterbranchofcaffe本代码运行的前提是,配置过caffe。因为配置caffe的过程中会出现一些依赖库,正是本代码所需要的。http://blog.csdn.NET/u011204487/article/details/51596471是配置caffe的过程。注意Makefile.config中的CPU_ONLY:=1
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象