文本挖掘之特征选择(python 实现)

代码改变世界

  • Posts - 36, Articles - 0, Comments - 35 

  • Cnblogs
  •  
  • Dashboard
  •  
  • Login

夜与周公

文本挖掘之特征选择(python 实现)

2013-08-15 10:32 by 夜与周公, 23648 阅读, 15 评论, 收藏, 编辑

  机器学习算法的空间、时间复杂度依赖于输入数据的规模,维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法。维度规约可以分为两类:

  • 特征选择(feature selection),从原始的d维空间中,选择为我们提供信息最多的k个维(这k个维属于原始空间的子集)
  • 特征提取(feature extraction),将原始的d维空间映射到k维空间中(新的k维空间不输入原始空间的子集)

  在文本挖掘与文本分类的有关问题中,常采用特征选择方法。原因是文本的特征一般都是单词(term),具有语义信息,使用特征选择找出的k维子集,仍然是单词作为特征,保留了语义信息,而特征提取则找k维新空间,将会丧失了语义信息。

  对于一个语料而言,我们可以统计的信息包括文档频率和文档类比例,所有的特征选择方法均依赖于这两个统计量,目前,文本的特征选择方法主要有:DF, MI, IG, CHI,WLLR,WFO六种。

  为了方便描述,我们首先一些概率上的定义:

    p(t):一篇文档x包含特征词t的概率。

    :文档x不属于Ci的概率。

    p(Ci|t):已知文档x的包括某个特征词t条件下,该文档属于Ci的概率

    : 已知文档属于Ci 条件下,该文档不包括特征词t的概率

  类似的其他的一些概率如p(Ci), 等,有着类似的定义。

为了估计这些概率,我们需要通过统计训练样本的相关频率信息,如下表:

文本挖掘之特征选择(python 实现)_第1张图片

 其中:

   Aij: 包含特征词ti,并且类别属于Cj的文档数量    Bij: 包含特征词ti,并且类别属于不Cj的文档数量

   Cij:不包含特征词ti,并且类别属于Cj的文档数量 Dij:不包含特征词ti,并且类别属于不Cj的文档数量

   Aij + Bij: 包含特征词ti的文档数量          Cij  + Dij:不包含特征词ti的文档数量

   Aij + Cij:Cj类的文档数量数据             Bij + Dij:非Cj类的文档数量数据

   Aij + Bij + Cij  + Dij = N :语料中所有文档数量。

有了这些统计量,有关概率的估算就变得容易,如:

    p(ti) =     (Aij + Bij) / N;    p(Cj) = (Aij +  Cij) / N;  

    p(Cj|tj) = Aij  / (Aij + Bij)        

  ......类似的一些概率计算可以依照上表计算。

  介绍了事情发展的前因,现在进入正题:常见的四种特征选择方法如何计算。

  1)DF(Document Frequency)

DF:统计特征词出现的文档数量,用来衡量某个特征词的重要性,DF的定义如下:

  DF的动机是,如果某些特征词在文档中经常出现,那么这个词就可能很重要。而对于在文档中出现很少(如仅在语料中出现1次)特征词,携带了很少的信息量,甚至是"噪声",这些特征词,对分类器学习影响也是很小。

  DF特征选择方法属于无监督的学习算法(也有将其改成有监督的算法,但是大部分情况都作为无监督算法使用),仅考虑了频率因素而没有考虑类别因素,因此,DF算法的将会引入一些没有意义的词。如中文的"的"、"是", "个"等,常常具有很高的DF得分,但是,对分类并没有多大的意义。

  2)MI(Mutual Information)

  互信息法用于衡量特征词与文档类别直接的信息量,互信息法的定义如下:

  继续推导MI的定义公式:

  从上面的公式上看出:如果某个特征词的频率很低,那么互信息得分就会很大,因此互信息法倾向"低频"的特征词。相对的词频很高的词,得分就会变低,如果这词携带了很高的信息量,互信息法就会变得低效。

  3)IG(Information Gain)

  信息增益法,通过某个特征词的缺失与存在的两种情况下,语料中前后信息的增加,衡量某个特征词的重要性。

信息增益的定义如下:

  依据IG的定义,每个特征词ti的IG得分前面一部分:计算值是一样,可以省略。因此,IG的计算公式如下:

IG与MI存在关系:

因此,IG方式实际上就是互信息与互信息加权。

4)CHI(Chi-square)

CHI特征选择算法利用了统计学中的"假设检验"的基本思想:首先假设特征词与类别直接是不相关的,如果利用CHI分布计算出的检验值偏离阈值越大,那么更有信心否定原假设,接受原假设的备则假设:特征词与类别有着很高的关联度。CHI的定义如下:

对于一个给定的语料而言,文档的总数N以及Cj类文档的数量,非Cj类文档的数量,他们都是一个定值,因此CHI的计算公式可以简化为:

CHI特征选择方法,综合考虑文档频率与类别比例两个因素

5)WLLR(Weighted Log Likelihood Ration)

WLLR特征选择方法的定义如下:

  计算公式如下:

6)WFO(Weighted Frequency and Odds)

最后一个介绍的算法,是由苏大李寿山老师提出的算法。通过以上的五种算法的分析,李寿山老师认为,"好"的特征应该有以下特点:

  • 好的特征应该有较高的文档频率
  • 好的特征应该有较高的文档类别比例

WFO的算法定义如下:

如果

否则:

不同的语料,一般来说文档词频与文档的类别比例起的作用应该是不一样的,WFO方法可以通过调整参数,找出一个较好的特征选择依据。

 

-----------------------------------------分割线---------------------------------------------

  介绍完理论部分,就要给出代码了(只给出公式,不给出代码的都是调戏良家的行为~)。文本挖掘之文本表示一文,利用了sklearn开源工具,自然先首先sklearn工具,可惜的是sklearn文本的特征选择方法仅提供了CHI一种。为此在sklearn框架下,尝试自己编写这些特征选择方法的代码,自己动手,丰衣足食。

 笔者实现了三种特征选择方法:IG,MI和WLLR,看官如果对其他特征选择方法感兴趣,可以尝试实现一下~ 好了,啥也不说了,上代码,特征选择模块代码:

复制代码

#!/usr/bin/env python
# coding=gbk

import os
import sys

import numpy as np

def get_term_dict(doc_terms_list):
    term_set_dict = {}
    for doc_terms in doc_terms_list:
        for term in doc_terms:
            term_set_dict[term] = 1
    term_set_list = sorted(term_set_dict.keys())       #term set 排序后,按照索引做出字典
    term_set_dict = dict(zip(term_set_list, range(len(term_set_list))))
    return term_set_dict

def get_class_dict(doc_class_list):
    class_set = sorted(list(set(doc_class_list)))
    class_dict = dict(zip(class_set, range(len(class_set))))
    return  class_dict

def stats_term_df(doc_terms_list, term_dict):
    term_df_dict = {}.fromkeys(term_dict.keys(), 0)
    for term in term_set:
        for doc_terms in doc_terms_list:
            if term in doc_terms_list:
                term_df_dict[term] +=1                
    return term_df_dict

def stats_class_df(doc_class_list, class_dict):
    class_df_list = [0] * len(class_dict)
    for doc_class in doc_class_list:
        class_df_list[class_dict[doc_class]] += 1
    return class_df_list

def stats_term_class_df(doc_terms_list, doc_class_list, term_dict, class_dict):
    term_class_df_mat = np.zeros((len(term_dict), len(class_dict)), np.float32)
    for k in range(len(doc_class_list)):
        class_index = class_dict[doc_class_list[k]]
        doc_terms = doc_terms_list[k]
        for term in set(doc_terms):
            term_index = term_dict[term]
            term_class_df_mat[term_index][class_index] +=1
    return  term_class_df_mat
        
def feature_selection_mi(class_df_list, term_set, term_class_df_mat):
    A = term_class_df_mat
    B = np.array([(sum(x) - x).tolist() for x in A])
    C = np.tile(class_df_list, (A.shape[0], 1)) - A
    N = sum(class_df_list)
    class_set_size = len(class_df_list)
    
    term_score_mat = np.log(((A+1.0)*N) / ((A+C) * (A+B+class_set_size)))
    term_score_max_list = [max(x) for x in term_score_mat]
    term_score_array = np.array(term_score_max_list)
    sorted_term_score_index = term_score_array.argsort()[: : -1]
    term_set_fs = [term_set[index] for index in sorted_term_score_index]
    
    return term_set_fs

def feature_selection_ig(class_df_list, term_set, term_class_df_mat):
    A = term_class_df_mat
    B = np.array([(sum(x) - x).tolist() for x in A])
    C = np.tile(class_df_list, (A.shape[0], 1)) - A
    N = sum(class_df_list)
    D = N - A - B - C
    term_df_array = np.sum(A, axis = 1)
    class_set_size = len(class_df_list)
    
    p_t = term_df_array / N
    p_not_t = 1 - p_t
    p_c_t_mat =  (A + 1) / (A + B + class_set_size)
    p_c_not_t_mat = (C+1) / (C + D + class_set_size)
    p_c_t = np.sum(p_c_t_mat  *  np.log(p_c_t_mat), axis =1)
    p_c_not_t = np.sum(p_c_not_t_mat *  np.log(p_c_not_t_mat), axis =1)
    
    term_score_array = p_t * p_c_t + p_not_t * p_c_not_t
    sorted_term_score_index = term_score_array.argsort()[: : -1]
    term_set_fs = [term_set[index] for index in sorted_term_score_index]    
    
    return term_set_fs

def feature_selection_wllr(class_df_list, term_set, term_class_df_mat):
    A = term_class_df_mat
    B = np.array([(sum(x) - x).tolist() for x in A])
    C_Total = np.tile(class_df_list, (A.shape[0], 1))
    N = sum(class_df_list)
    C_Total_Not = N - C_Total
    term_set_size = len(term_set)
    
    p_t_c = (A + 1E-6) / (C_Total + 1E-6 * term_set_size)
    p_t_not_c = (B +  1E-6) / (C_Total_Not + 1E-6 * term_set_size)
    term_score_mat = p_t_c  * np.log(p_t_c / p_t_not_c)
    
    term_score_max_list = [max(x) for x in term_score_mat]
    term_score_array = np.array(term_score_max_list)
    sorted_term_score_index = term_score_array.argsort()[: : -1]
    term_set_fs = [term_set[index] for index in sorted_term_score_index]
    
    print term_set_fs[:10]
    return term_set_fs

def feature_selection(doc_terms_list, doc_class_list, fs_method):
    class_dict = get_class_dict(doc_class_list)
    term_dict = get_term_dict(doc_terms_list)
    class_df_list = stats_class_df(doc_class_list, class_dict)
    term_class_df_mat = stats_term_class_df(doc_terms_list, doc_class_list, term_dict, class_dict)
    term_set = [term[0] for term in sorted(term_dict.items(), key = lambda x : x[1])]
    term_set_fs = []
    
    if fs_method == 'MI':
        term_set_fs = feature_selection_mi(class_df_list, term_set, term_class_df_mat)
    elif fs_method == 'IG':
        term_set_fs = feature_selection_ig(class_df_list, term_set, term_class_df_mat)
    elif fs_method == 'WLLR':
        term_set_fs = feature_selection_wllr(class_df_list, term_set, term_class_df_mat)
        
    return term_set_fs
    

复制代码

    在movie语料里面比较着三种特征选择方法,调用方法如下:

复制代码

#!/usr/bin/env python
# coding=gbk

import os
import sys

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_files
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import  CountVectorizer
from sklearn.naive_bayes import MultinomialNB

import feature_selection
    
def text_classifly_twang(dataset_dir_name, fs_method, fs_num):
    print 'Loading dataset, 80% for training, 20% for testing...'
    movie_reviews = load_files(dataset_dir_name)  
    doc_str_list_train, doc_str_list_test, doc_class_list_train, doc_class_list_test = train_test_split(movie_reviews.data, movie_reviews.target, test_size = 0.2, random_state = 0)
    
    print 'Feature selection...'
    print 'fs method:' + fs_method, 'fs num:' + str(fs_num)
    vectorizer = CountVectorizer(binary = True)   
    word_tokenizer = vectorizer.build_tokenizer()
    doc_terms_list_train = [word_tokenizer(doc_str) for doc_str in doc_str_list_train]
    term_set_fs = feature_selection.feature_selection(doc_terms_list_train, doc_class_list_train, fs_method)[:fs_num]
    
    print 'Building VSM model...'
    term_dict = dict(zip(term_set_fs, range(len(term_set_fs))))
    vectorizer.fixed_vocabulary = True
    vectorizer.vocabulary_ = term_dict
    doc_train_vec = vectorizer.fit_transform(doc_str_list_train)
    doc_test_vec= vectorizer.transform(doc_str_list_test)
    
    clf = MultinomialNB().fit(doc_train_vec, doc_class_list_train)  #调用MultinomialNB分类器
    doc_test_predicted = clf.predict(doc_test_vec)
    
    acc = np.mean(doc_test_predicted == doc_class_list_test)  
    print 'Accuracy: ', acc
    
    return acc
       

if __name__ == '__main__':
    dataset_dir_name = sys.argv[1]
    fs_method_list = ['IG', 'MI', 'WLLR']
    fs_num_list = range(25000, 35000, 1000)
    acc_dict = {}
   
    for fs_method in fs_method_list:
        acc_list = []
        for fs_num in fs_num_list:
            acc = text_classifly_twang(dataset_dir_name, fs_method, fs_num)
            acc_list.append(acc)
        acc_dict[fs_method] = acc_list
        print 'fs method:', acc_dict[fs_method]
        
    for fs_method in fs_method_list:
        plt.plot(fs_num_list, acc_dict[fs_method],  '--^',  label = fs_method)
        plt.title('feature  selection')
        plt.xlabel('fs num')
        plt.ylabel('accuracy')
        plt.ylim((0.82, 0.86))
        
    plt.legend( loc='upper left', numpoints = 1)
    plt.show()
    

复制代码

  输出的结果:

文本挖掘之特征选择(python 实现)_第2张图片

https://www.cnblogs.com/wangbogong/p/3251132.html

  从上面的图看出:分类的性能随着特征选择的数量的增加,呈现“凸”形趋势:1)在特征数量较少的情况下,不断增加特征的数量,有利于提高分类器的性能,呈现“上升”趋势;2)随着特征数量的不断增加,将会引入一些不重要的特征,甚至是噪声,因此,分类器的性能将会呈现“下降”的趋势。这张“凸”形趋势体现出了特征选择的重要性:选择出重要的特征,并降低噪声,提高算法的泛化能力。

参数文献:

    1.Y. Yang and J. Pedersen. 1997. A comparative study on feature selection in text categorization.

    2.Shoushan Li, Rui Xia, Chengqing Zong and Chu-Ren Huang.2009.A Framework of Feature Selection Methods for Text Categorization

    3.老板的课件

 

好文要顶 关注我 收藏该文  

夜与周公
关注 - 3
粉丝 - 66

+加关注

5

0

« 上一篇:C++模板专门化与重载
» 下一篇:数组中子数组之和最大问题

  • 分类: 机器学习,文本挖掘与情感分析
  •  

ADD YOUR COMMENT

 

  1. #1楼 CodeMeals  2013-08-15 11:25

    楼主总结的很好,排版很不错,代码风格让我看着舒服,支持

    支持(0)反对(0)

  2. #2楼 码有钱  2013-08-15 13:30

    好文章

    支持(0)反对(0)

  3. #3楼 醋留香  2013-11-03 22:25

    楼主,请问你老板的关于NLP或者Text Mining的课件可以分享吗?

    支持(0)反对(0)

  4. #4楼 King_K  2013-11-22 16:35

    师兄学习了。。

    支持(0)反对(0)

  5. #5楼 幺湾地  2014-03-06 14:30

    DF那个可以优化成TF×IDF来算,这样可以把“的 我”之类的排除掉

    支持(0)反对(0)

  6. #6楼 chantz  2014-06-03 16:56

    机器学习新手,一个疑问:为什么需要做feature selection呢? 希望楼主解释下做这个的动机,就更好了

    支持(0)反对(0)

  7. #7楼[楼主] 夜与周公  2014-06-12 23:26

    @ chantz
    原因可能有:1)降低数据的噪声,选择更有代表性的特征参与到决策中(可以参考文中的图,并非采用所有特征分类效果达到最高);2)降低计算成本(针对高维情况)。

    支持(2)反对(0)

  8. #8楼 罗伊斯  2015-03-16 14:13

    你好,想向你咨询一些文本挖掘方面的问题,能留个qq联系吗

    支持(0)反对(0)

  9. #9楼 Trycr  2015-05-03 11:42

    楼主,你好!代码好多看不懂,你可以注释一下嘛?

    支持(0)反对(0)

  10. #10楼 fancy_bug  2015-05-08 23:51

    楼主您好,很喜欢您写代码的逻辑。有个问题,您有没有见过文本分类之前做特征词选择有没有见过用forward backward 的?教授说有时候线性分类器不好用,最好用forward backward。但后来自己越想越觉得不对头,cost大是一个方面,另外根本没见过同样做法提取文本特征值的。。。您觉得我的那位教授说的用法真对吗?

    支持(0)反对(0)

  11. #11楼 xiaoganggang  2017-07-30 10:04

    你好,运行你的代码,得不到和你一样的结果,你有空可以帮我看下?我的邮箱[email protected]

    支持(0)反对(0)

  12. #12楼 紫茉莉花开半夏  2017-07-31 21:59

    今天花了一天的时间看你的代码,包括各种查资料,你写的代码都是高大上的语句,确实很简练,但是我看起来有点费劲,毕竟有的语法不清楚。我想说的是,部分代码还是觉得有问题呢?大神可否回复我一下,就是那个term_set,文中并没有给出来它的索引的是什么样子的??在线等

    支持(1)反对(0)

  13. #13楼 紫茉莉花开半夏  2017-07-31 22:01

    大神,你写的代码都是高大上的语句,确实很简练,但是我看起来有点费劲,毕竟有的语法不清楚。我想说的是,部分代码还是觉得有问题呢?大神可否回复我一下,就是那个term_set,文中并没有给出来它的索引的是什么样子的?可否发一份完整的文本分类代码?我的邮箱[email protected],十分感谢

    支持(2)反对(0)

  14. #14楼 祁祺  2018-03-22 20:20

    您好,我将数据改成自己csv格式的数据运行这个程序时,不管选取特征词是多少,也不管用哪种特征选择方法,分类器的准确率都是一样的。请问,你知道什么原因吗

    支持(1)反对(0)

  15. #15楼 紫茉莉花开半夏  2018-03-31 08:33

    @ 祁祺
    换个数据库吧,我也是这种情况

    支持(0)反对(0)

刷新评论刷新页面返回顶部

注册用户登录后才能发表评论,请 登录 或 注册,访问网站首页。

【推荐】超50万VC++源码: 大型组态工控、电力仿真CAD与GIS源码库!
【前端】SpreadJS表格控件,可嵌入应用开发的在线Excel
【推荐】如何快速搭建人工智能应用?
【大赛】2018首届“顶天立地”AI开发者大赛

文本挖掘之特征选择(python 实现)_第3张图片

最新IT新闻:
· 微软Windows社区工具包Github下载量破100万
· 阿里张勇:与星巴克不只商业合作 是文化和创新的共识
· 百度竞价排名的诚信问题卷土重来:又“作恶”了?
· 数据泄露再发生Reddit 05-07年曾遭黑客入侵
· 五环内用户自述:我为啥理解不了拼多多
» 更多新闻...

最新知识库文章:

· 历史转折中的“杭派工程师”
· 如何提高代码质量?
· 在腾讯的八年,我的职业思考
· 为什么我离开了管理岗位
· 那些让人睡不着觉的bug,你有没有遭遇过?

» 更多知识库文章...

About

昵称:夜与周公
园龄:5年4个月
粉丝:66
关注:3

+加关注

 

最新评论

  • Re:文本挖掘之特征选择(python 实现) 
    @祁祺 换个数据库吧,我也是这种情况 -- 紫茉莉花开半夏
  • Re:文本挖掘之特征选择(python 实现) 
    您好,我将数据改成自己csv格式的数据运行这个程序时,不管选取特征词是多少,也不管用哪种特征选择方法,分类器的准确率都是一样的。请问,你知道什么原因吗 -- 祁祺

随笔档案

  • 2014年3月(2)
  • 2013年10月(1)
  • 2013年8月(9)
  • 2013年7月(3)
  • 2013年6月(6)
  • 2013年5月(9)
  • 2013年4月(1)
  • 2013年3月(5)

日历

< 2018年8月 >
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8

随笔分类

  • C++(13)
  • Python(3)
  • 机器学习(13)
  • 算法(14)
  • 文本挖掘与情感分析(2)

推荐排行榜

  • 1. 文本挖掘之文本表示(7)
  • 2. 文本挖掘之特征选择(python 实现)(5)
  • 3. logistic regression C++实现(2)
  • 4. 熵、信息增益以及其他(1)
  • 5. 寻找最大(小)的K个数(1)

阅读排行榜

  • 1. 文本挖掘之特征选择(python 实现)(23648)
  • 2. 文本挖掘之文本表示(8496)
  • 3. 逻辑斯特回归模型(logistic regression)(5077)
  • 4. logistic regression C++实现(3369)
  • 5. SVM学习资料(1615)

你可能感兴趣的:(ñNLP)