在开始介绍播放器开发之前,我们首先对posix库进行一定的封装,得到我们想要的Mutex、Condition、Thread等类。至于为何不用C++11自带的相关类呢?这是考虑到编译环境的问题,有些公司可能仍旧没升级NDK的版本,不支持C++11,这里为了方便,只好利用Posix封装一套Thread相关的基础类,部分代码参考(copy)自Android 源码中的代码。至于原理,这里就不介绍了,网上相关资料还是很多的,分析互斥锁、条件锁等原理不是本文章的重点。
Mutex封装
Mutex的封装可参考Android 的libutil库里面的代码,直接复制过来使用即可,代码里面还封装了AutoLock。代码如下:
#ifndef MUTEX_H
#define MUTEX_H
#include
#include
#include
#include
typedef int32_t status_t;
class Condition;
class Mutex {
public:
enum {
PRIVATE = 0,
SHARED = 1
};
Mutex();
Mutex(const char* name);
Mutex(int type, const char* name = NULL);
~Mutex();
// lock or unlock the mutex
status_t lock();
void unlock();
// lock if possible; returns 0 on success, error otherwise
status_t tryLock();
// Manages the mutex automatically. It'll be locked when Autolock is
// constructed and released when Autolock goes out of scope.
class Autolock {
public:
inline Autolock(Mutex& mutex) : mLock(mutex) { mLock.lock(); }
inline Autolock(Mutex* mutex) : mLock(*mutex) { mLock.lock(); }
inline ~Autolock() { mLock.unlock(); }
private:
Mutex& mLock;
};
private:
friend class Condition;
// A mutex cannot be copied
Mutex(const Mutex&);
Mutex& operator = (const Mutex&);
pthread_mutex_t mMutex;
};
inline Mutex::Mutex() {
pthread_mutex_init(&mMutex, NULL);
}
inline Mutex::Mutex(const char* name) {
pthread_mutex_init(&mMutex, NULL);
}
inline Mutex::Mutex(int type, const char* name) {
if (type == SHARED) {
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(&mMutex, &attr);
pthread_mutexattr_destroy(&attr);
} else {
pthread_mutex_init(&mMutex, NULL);
}
}
inline Mutex::~Mutex() {
pthread_mutex_destroy(&mMutex);
}
inline status_t Mutex::lock() {
return -pthread_mutex_lock(&mMutex);
}
inline void Mutex::unlock() {
pthread_mutex_unlock(&mMutex);
}
inline status_t Mutex::tryLock() {
return -pthread_mutex_trylock(&mMutex);
}
typedef Mutex::Autolock AutoMutex;
#endif //MUTEX_H
Condition封装
Condition类的封装跟Mutex一样,直接从Android源码里面复制过来,稍作修改即可。代码如下:
#ifndef CONDITION_H
#define CONDITION_H
#include
#include
#include
#include
#include
typedef int64_t nsecs_t; // nano-seconds
class Condition {
public:
enum {
PRIVATE = 0,
SHARED = 1
};
enum WakeUpType {
WAKE_UP_ONE = 0,
WAKE_UP_ALL = 1
};
Condition();
Condition(int type);
~Condition();
status_t wait(Mutex& mutex);
status_t waitRelative(Mutex& mutex, nsecs_t reltime);
void signal();
void signal(WakeUpType type) {
if (type == WAKE_UP_ONE) {
signal();
} else {
broadcast();
}
}
void broadcast();
private:
pthread_cond_t mCond;
};
inline Condition::Condition() {
pthread_cond_init(&mCond, NULL);
}
inline Condition::Condition(int type) {
if (type == SHARED) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&mCond, &attr);
pthread_condattr_destroy(&attr);
} else {
pthread_cond_init(&mCond, NULL);
}
}
inline Condition::~Condition() {
pthread_cond_destroy(&mCond);
}
inline status_t Condition::wait(Mutex &mutex) {
return -pthread_cond_wait(&mCond, &mutex.mMutex);
}
inline status_t Condition::waitRelative(Mutex &mutex, nsecs_t reltime) {
struct timeval t;
struct timespec ts;
gettimeofday(&t, NULL);
ts.tv_sec = t.tv_sec;
ts.tv_nsec = t.tv_usec*1000;
ts.tv_sec += reltime / 1000000000;
ts.tv_nsec += reltime % 1000000000;
if (ts.tv_nsec >= 1000000000) {
ts.tv_nsec -= 1000000000;
ts.tv_sec += 1;
}
return -pthread_cond_timedwait(&mCond, &mutex.mMutex, &ts);
}
inline void Condition::signal() {
pthread_cond_signal(&mCond);
}
inline void Condition::broadcast() {
pthread_cond_broadcast(&mCond);
}
#endif //CONDITION_H
Thread封装
为了方便使用线程,我们对pthread进行封装。完整的代码如下:
#include
#include
typedef enum {
Priority_Default = -1,
Priority_Low = 0,
Priority_Normal = 1,
Priority_High = 2
} ThreadPriority;
class Runnable {
public:
virtual ~Runnable(){}
virtual void run() = 0;
};
/**
* Thread can use a custom Runnable, but must delete Runnable constructor yourself
*/
class Thread : public Runnable {
public:
Thread();
Thread(ThreadPriority priority);
Thread(Runnable *runnable);
Thread(Runnable *runnable, ThreadPriority priority);
virtual ~Thread();
void start();
void join();
void detach();
pthread_t getId() const;
bool isActive() const;
protected:
static void *threadEntry(void *arg);
int schedPriority(ThreadPriority priority);
virtual void run();
protected:
Mutex mMutex;
Condition mCondition;
Runnable *mRunnable;
ThreadPriority mPriority; // thread priority
pthread_t mId; // thread id
bool mRunning; // thread running
bool mNeedJoin; // if call detach function, then do not call join function
};
inline Thread::Thread() {
mNeedJoin = true;
mRunning = false;
mId = -1;
mRunnable = NULL;
mPriority = Priority_Default;
}
inline Thread::Thread(ThreadPriority priority) {
mNeedJoin = true;
mRunning = false;
mId = -1;
mRunnable = NULL;
mPriority = priority;
}
inline Thread::Thread(Runnable *runnable) {
mNeedJoin = false;
mRunning = false;
mId = -1;
mRunnable = runnable;
mPriority = Priority_Default;
}
inline Thread::Thread(Runnable *runnable, ThreadPriority priority) {
mNeedJoin = false;
mRunning = false;
mId = -1;
mRunnable = runnable;
mPriority = priority;
}
inline Thread::~Thread() {
join();
mRunnable = NULL;
}
inline void Thread::start() {
if (!mRunning) {
pthread_create(&mId, NULL, threadEntry, this);
mNeedJoin = true;
}
// wait thread to run
mMutex.lock();
while (!mRunning) {
mCondition.wait(mMutex);
}
mMutex.unlock();
}
inline void Thread::join() {
Mutex::Autolock lock(mMutex);
if (mId > 0 && mNeedJoin) {
pthread_join(mId, NULL);
mNeedJoin = false;
mId = -1;
}
}
inline void Thread::detach() {
Mutex::Autolock lock(mMutex);
if (mId >= 0) {
pthread_detach(mId);
mNeedJoin = false;
}
}
inline pthread_t Thread::getId() const {
return mId;
}
inline bool Thread::isActive() const {
return mRunning;
}
inline void* Thread::threadEntry(void *arg) {
Thread *thread = (Thread *) arg;
if (thread != NULL) {
thread->mMutex.lock();
thread->mRunning = true;
thread->mCondition.signal();
thread->mMutex.unlock();
thread->schedPriority(thread->mPriority);
// when runnable is exit,run runnable else run()
if (thread->mRunnable) {
thread->mRunnable->run();
} else {
thread->run();
}
thread->mMutex.lock();
thread->mRunning = false;
thread->mCondition.signal();
thread->mMutex.unlock();
}
pthread_exit(NULL);
return NULL;
}
inline int Thread::schedPriority(ThreadPriority priority) {
if (priority == Priority_Default) {
return 0;
}
struct sched_param sched;
int policy;
pthread_t thread = pthread_self();
if (pthread_getschedparam(thread, &policy, &sched) < 0) {
return -1;
}
if (priority == Priority_Low) {
sched.sched_priority = sched_get_priority_min(policy);
} else if (priority == Priority_High) {
sched.sched_priority = sched_get_priority_max(policy);
} else {
int min_priority = sched_get_priority_min(policy);
int max_priority = sched_get_priority_max(policy);
sched.sched_priority = (min_priority + (max_priority - min_priority) / 2);
}
if (pthread_setschedparam(thread, policy, &sched) < 0) {
return -1;
}
return 0;
}
inline void Thread::run() {
// do nothing
}
备注:
为何不用C++11的线程?编译器可能不支持C++11。这里只是做兼容,而且音视频的库基本都是C语言编写的,这里主要是考虑到二进制接口兼容性的问题。在使用带异常的C++时,有可能会导致ffmpeg某些版本出现偶然的内部崩溃问题,这个是我在实际使用过程中发现的。这个C++二进制接口兼容性问题各个技术大牛有专门讨论过,我并不擅长C++,也讲不出更深入的说法,想要了解的话,建议自行找资料了解,这里就不费口舌了。
当继承Thread类时,我们需要重写run方法。
Runnable 是一个抽象基类,用来模仿Java层的Runnable接口。当我们使用Runnable时,必须有外部释放Runnable的内存,这里并没有垃圾回收功能,要做成Java那样能够自动回收内存,这个超出了我的能力范围。我这里只是为了方便使用而简单地将pthread封装起来使用而已。
如果要使用pthread_detach的时候,希望调用Thread的detach方法。这样Thread的线程标志不会混乱。调用pthread_detach后,如果不调用pthread_exit方法,会导致线程结构有个8K的内存没有释放掉。默认情况下是没有detach的,此时,如果要释放线程的内存,需要在线程执行完成之后,不管是否调用了pthread_exit方法,都调用pthread_join方法阻塞销毁线程占用的那个8K内存。这也是我为何要将Thread封装起来的原因之一。我们有时候不想detach一个线程,这时候,我们就需要用join来释放,重复调用的话,会导致出现 fatal signal 6 的情况。
备注2:
关于NDK 常见的出错信息意义:
fatal signal 4: 常见情况是方法没有返回值,比如一个返回int的方法,到最后没有return ret。
fatal signal 6:常见情况是pthread 线程类阻塞了,比如重复调用join方法,或者一个线程detach之后,然后又调用join就会出现这种情况
fatal signal 11:空指针出错。在多线程环境下,由于对象在另外一个线程释放调用,而该线程并没有停止,仍然在运行阶段,此时调用到该被释放的对象时,就会出现fatal signal 11 的错误。
其他的出错信息一般比较少见,至少本人接触到的NDK代码,还没遇到过其他出错信息。
好了,我们这里封装完了基础公共类之后,就可以愉快地编写C/C++代码了。
完整代码请参考本人的播放器项目:CainPlayer