- 【大模型应用开发 动手做AI Agent】第一轮行动:工具执行搜索
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】第一轮行动:工具执行搜索作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,大模型应用开发已经成为当下热门的研究方向。AIAgent作为人工智能领域的一个重要分支,旨在模拟人类智能行为,实现智能决策和自主行动。在AIAgent的构建过程中,工具执行搜索是至关重要
- 遥感图像分割系统:融合空间金字塔池化(FocalModulation)改进YOLOv8
xuehaisj
YOLO人工智能计算机视觉yolov8
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像分割是遥感技术领域中的一个重要研究方向,它的目标是将遥感图像中的不同地物或地物类别进行有效的分割和识别。随着遥感技术的不断发展和遥感图像数据的大规模获取,遥感图像分割在农业、城市规划、环境监测等领域具有广泛的应用前景。然而,由于遥感图像的特
- 纯生信很难发表?只是你没有及时抓住研究热点
SCI狂人团队
当你还做meta分析的时候,你会发现meta分析很难发或者单位已经不承认了,而聪明的人已经开始做常规的生信GEO、TCGA数据挖掘这些(这个时候生信比较好发)。当你开始做常规的生信GEO、TCGA数据挖掘的时候,你会发现这些一样也是比较难发了,而聪明的人已经开始抓免疫评分这个热点进行生信数据挖掘(这个时候免疫评分比较好发)。当你开始对免疫评分这个热点进行生信数据挖掘的时候,你会发现自己的研究方向差
- 2018-04-14《人情与面子》读书卡片
无方Louie
###人名:黄光国(1945-?)印象:黄光国目前在台湾大学心理学系任职。研究方向为社会科学本土化,本土社会心理学。例子:著有中英论文一百多篇。2010年写就《人情与面子》。为推动西方社会科学本土化花费十几年时间撰写了一本《社会科学的理路》出处:百度百科、《人情与面子》###人名:费孝通(1910.11.2-2005.4.24)印象:费孝通是中国社会学和人类学的奠基人之一,赫胥黎奖,《大英百科全书
- 深度学习驱动下的字符识别:挑战与创新
逼子歌
神经网络深度学习字符识别卷积神经网络图像处理特征提取
一、引言1.1研究背景深度学习在字符识别领域具有至关重要的地位。随着信息技术的飞速发展,对字符识别的准确性和效率要求越来越高。字符识别作为计算机视觉领域的一个重要研究方向,其主要目的是将各种形式的字符转换成计算机可识别的文本信息。近年来,深度学习技术在字符识别领域取得了显著的进展。国内研究者主要使用基于模板匹配的方法、基于统计模型的方法、基于神经网络的方法等各种方法进行字符识别研究。目前,国内各大
- 【专题】2024年中国AI人工智能基础数据服务研究报告合集PDF分享(附原数据表)
拓端研究室
人工智能
原文链接:https://tecdat.cn/?p=37516随着人工智能技术的迅猛发展,AI基础数据服务行业迎来了前所未有的发展机遇。报告合集显示,2023年中国AI基础数据服务市场规模达到45亿元,且未来五年复合增长率有望达到30.4%。多模态大模型、长文本处理能力提升以及大模型小型化技术成为AI领域热点研究方向,从而推动了对高质量数据的大量需求。阅读原文,获取专题报告合集全文,解锁文末403
- OPENAI中RAG实现原理以及示例代码用PYTHON来实现
dzend
aigcpython开发语言ai
OPENAI中RAG实现原理以及示例代码用PYTHON来实现1.引言在当今人工智能领域,自然语言处理(NLP)是一个非常重要的研究方向。近年来,OPENAI发布了许多创新的NLP模型,其中之一就是RAG(Retrieval-AugmentedGeneration)模型。RAG模型结合了检索和生成两种方法,可以用于生成与给定问题相关的高质量文本。本文将介绍RAG模型的实现原理,并提供使用Python
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- yolov8 模型架构轻量化 | 极致降参数量
机 _ 长
YOLOv5YOLOv8YOLOv9模型有效涨点改进YOLO
模型轻量化加速是深度学习领域的重要研究方向,旨在减小模型的体积和计算复杂度,从而提高在资源受限设备上的运行效率,模型参数量在轻量化加速中扮演着至关重要的角色。首先,模型参数量直接决定了模型的复杂度和存储空间需求。随着深度学习技术的不断发展,模型参数数量急剧增加,导致模型体积庞大,给存储和传输带来了巨大挑战。通过减少模型参数量,可以有效降低模型的体积,从而减小存储空间需求,使模型更容易在嵌入式设备和
- 陕西省青年书法家王晓欢书写春联
不忧书法
王晓欢,艺术硕士研究生,陕西省书法家协会会员,陕西省硬笔书法家协会会员,西安市书协会员。北兰亭书友会会员,师从著名书法家傅如明教授。擅长楷书、行书、小楷。设计理论与传统文化艺术研究方向,主要以颜真卿、欧阳询、褚遂良以及二王行书为主要取法,做传统文化的发扬、继承、传播。获奖情况:《岳阳楼记》荣获第二届“陕西书法奖”入展作品入展“中华好家训”全国书法作品展荣获“崇廉尚德好家风润西安”写家训三等奖第七届
- 2024数学建模美赛ABC题参考思路论文
2024年数学建模国赛
2024数学建模(持续更新耐心等待不代写论文)python2024数学建模代码2024美赛数学建模美赛
2024年思路持续更新中,所有题目,会第一时间发布到专栏内!!!摘要:随着世界医疗卫生行业和科技的不断发展,我国医疗大数据发展迅速,康复工程日趋成熟,脑电信号分析和判别是面向康复工程的重要研究方向之一。大脑是人体中高级神经活动的中枢,拥有着数以亿计的神经元,信息由神经元负责处理,通过突触连接来传递,突触连接产生脑电信号。因此脑电信号的分析和判别具有深远意义。本文针对特定脑电接口实验数据,从诱发脑电
- 基于视觉-语言模型的机器人任务规划:ViLaIn框架解析
晓shuo
语言模型机器人人工智能
目录一、引言二、ViLaln框架介绍总体框架概述对象估计器初始状态估计器目标估计器纠错重提示机制(CR)参考文献一、引言 随着机器人技术的不断发展,如何通过自然语言指令引导机器人执行任务成为了一个重要的研究方向。自然语言作为人与机器人互动的一种直观方式,能够帮助非技术用户轻松下达任务。然而,传统的机器人任务规划方法,尤其是符号规划方法,尽管具有较好的解释性,但在处理复杂环境时显得不够灵活。而现代
- Day 18 既要仰望星空,也要脚踏实地
南和038胡媛媛
已经有三天没有更文了,今天上午的培训强度不是很大,听完两节公开课,简单地来回顾一下这几天的培训内容。28号上午上完两个班的课,安排好班里面的各种事情,中午简单吃过午饭开车来到邢台学院聆听了徐燕坤老师和张校长给我们分享的关于手绘版和电脑版的思维导图的制作。其实思维导图一直是我特别感兴趣的一个研究方向,在我们的课程当中我们可以运用思维导图让孩子们理清头绪,从而把握语言点、把握语法结构以及其它我们需要讲
- 高校为什么需要AIGC大数据实验室?
泰迪智能科技01
AIGCAIGC大数据
AIGC大数据实验室是一个专注于人工智能生成内容(AIGC)和大数据相关技术研究、开发与应用的创新实验平台。AIGC主要研究方向包括:AIGC技术创新、大数据处理与分析、AIGC与大数据融合应用。AIGC技术创新:探索如何利用人工智能算法,如深度学习中的生成对抗网络(GAN)、变分自编码器(VAE)、基于Transformer架构的语言模型(如GPT系列)等,来高效地生成高质量的文本、图像、音频、
- A Tutorial on Near-Field XL-MIMO Communications Towards 6G【论文阅读笔记】
Cc小跟班
【论文阅读】相关论文阅读笔记
此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~论文主要内容:建立XL-MIMO模型,考虑NUSW信道和非平稳性;基于近场信道模型,分析性能(SNRscalinglaws,波束聚焦、速率、DoF)XL-MIMO设计问题:信道估计、波束码本、波束训练、DAMXL-MIMO信道特性变化:UPW➡NUSW空间平稳–>空间非平稳(可视区域
- 三维海浪模型建模与matlab仿真
简简单单做算法
MATLAB算法开发#三维重建matlab开发语言计算机视觉
目录1.算法理论概述一、引言二、海浪模型三、三维海浪模型建模四、海浪模型数学原理2.部分核心程序3.算法运行软件版本4.算法运行效果图预览5.算法完整程序工程1.算法理论概述一、引言三维海浪模型建模是计算机图形学中的一个重要研究方向,可以模拟海浪的形态和运动规律,具有广泛的应用价值。目前,三维海浪模型建模已经成为计算机图形学领域的一个热门研究方向。本文将详细介绍三维海浪模型建模的实现步骤和数学原理
- 【ShuQiHere】从 FNN 到 RNN:用股票价格预测一步步理解神经网络的演化
ShuQiHere
神经网络rnn人工智能
【ShuQiHere】引言神经网络在人工智能和机器学习领域是一个核心的研究方向,而前馈神经网络(FNN)是最基础的模型之一。虽然FNN在许多任务中表现出色,但当面对时间序列数据时,例如预测股票价格,它往往显得力不从心。这是因为FNN无法有效利用历史信息来预测未来的走势。为了解决这一问题,循环神经网络(RNN)被引入。通过这个熟悉的例子——股票价格预测,我们将一步步探讨RNN是如何从FNN演化而来的
- 《中国人工智能学会通讯》——7.17 篇章语义分析方法概述
weixin_33941350
人工智能
7.17篇章语义分析方法概述篇章语义分析主要有以下三个主流的研究方向。以篇章结构为核心此类研究工作的目标是识别不同文本块之间的语义关系,例如条件关系、对比关系等,亦称为修辞关系识别。根据是否需要将文本分割为一系列彼此不相交的覆盖序列,可以将本类方法进一步分成两大类:第一类以修辞结构理论(RhetoricalStructureTheory)和篇章图树库(DiscourseGraphBank)为代表,
- 【浙江工业大学、中国人工智能学会自然计算与数字智能城市专委会联合主办|ACM独立出版|往届均已见刊并完成EI、SCOPUS检索】第四届机器学习与计算机应用国际学术会议(ICMLCA 2023)
艾思科蓝 AiScholar
人工智能机器学习信息与通信图像处理人机交互计算机视觉数据分析
第四届机器学习与计算机应用国际学术会议(ICMLCA2023)定于2023年10月27-29日在中国杭州隆重举行。本届会议将主要关注机器学习和计算机应用面临的新的挑战问题和研究方向,着力反映国际机器学习和计算机应用相关技术研究的新进展。大会网站:https://ais.cn/u/iMrIjq(更多会议详情)截稿时间:以官网信息为准收录检索:EICompendex,Scopus【往届已见刊并完成EI
- 探索未来飞行器控制方式:Node.js版AR.Drone库
毕艾琳
探索未来飞行器控制方式:Node.js版AR.Drone库node-ar-droneAnode.jsclientforcontrollingParrotARDrone2.0quad-copters.项目地址:https://gitcode.com/gh_mirrors/no/node-ar-drone在计算机科学领域中,无人机已经成为一个重要的研究方向。近年来,随着硬件设备的发展和智能算法的进步,
- 强化学习在自动驾驶系统中的应用
N201871643
自动驾驶人工智能机器学习
强化学习在自动驾驶系统中的应用目录一、引言二、强化学习的定义三、强化学习的常用属性四、强化学习在自动驾驶系统中的应用案例五、总结一、引言自动驾驶技术是近年来人工智能领域的一个重要研究方向,旨在使汽车能够自主地感知环境、做出决策并执行相应的操作。强化学习作为一种基于试错的学习方法,已经在自动驾驶系统中得到了广泛的应用。本文将对强化学习在自动驾驶系统中的应用进行深入探讨,包括定义、常用属性、事件和实操
- 《陈天奇:机器学习科研的十年》阅读笔记
Bunny_Ben
科研方法&心得笔记
0、作者介绍陈天奇是机器学习领域著名的青年华人学者之一,本科毕业于上海交通大学ACM班,博士毕业于华盛顿大学计算机系,研究方向为大规模机器学习。2019年,陈天奇在Twitter上宣布自己将于2020年秋季加入CMU任助理教授,成为加入CMU的年轻华人学者之一。在本文中,陈天奇回顾了自己做机器学习科研的十年。 1、原文十年前,MSRA的夏天,刚开始尝试机器学习研究的我面对科研巨大的不确定性,感到最
- CVPR2024部分研究方向文章梳理(持续更新中)
路漫漫独求索
计算机视觉人工智能深度学习分类AI作画stablediffusion
CVPR2024部分研究方向文章梳理(持续更新中)长尾分布(Long-Tailed)DeiT-LT:DistillationStrikesBackforVisionTransformerTrainingonLong-TailedDatasets.全文地址:DeiT-LT\(rangwani-harsh.github.io\)领域自适应(DomainAdaptation)LearningCNNonV
- 2021-09-21科普写作就是践行费曼学习法
朗月斋主
只有传播才能体现科学的价值,我们最熟悉的那些最顶级的刊物,为什么有这么大的影响力,就是因为多数文章是属于科普级别的讲座,对各行各业、各个研究方向的人都会带来启发和引导。科学研究,只有转化成文字才能成为可以重复可以贡献给社会的力量。因此,科普创作的重要意义不言自明。不善于把一个科学知识用普通人能理解的方式表达出来是说明对这个对象理解还不够深。这也就是费曼学习法的核心所在。熟练的输出来源于稳定的输入和
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 关于移动互联数据挖掘在智慧旅游方面的应用
VLIAN_
行业技术智慧旅游数据挖掘移动互联数学建模预测
I、基于移动互联网是随时随地可以操作的,可以掌握的客观数据类型包括常规互联网很难掌握的位置(GPS)、图片(Camera)、有效操作周期(Activity)等,移动互联网的数据挖掘研究方向的具体课题方向包括:用户行为模式:各种应用的不同活跃时间模型、地点模型、操作模型、安装和卸载的模型用户偏好模式:活跃周期和卸载率模型、推荐达成条件模型、关注度模型用户体验模式:点击率和应用功能的深度模型、同类型体
- 北京工业大学计算机科学与技术考研真题,北京工业大学计算机科学与技术考研...
weixin_39756696
一、北京工业大学计算机科学与技术考研研究方向有什么?各个学校每年的专业设置及研究方向会根据实际情况有所变动,考生需登录北京工业大学研究生院官网,具体的就要查看院校今年最新公布的研究生招生简章、招生专业目录。2014年计算机科学与技术专业考研的研究方向有:_01计算机系统结构_02计算机软件与理论_03计算机应用技术_04信息安全二、北京工业大学计算机科学与技术考研科目是什么?计算机科学与技术专业考
- 探索AI智能体Agent的核心架构:记忆、工具与行动
程序员笑武
chatgpt人工智能语言模型金融AIGC机器学习embedding
近年来,人工智能技术不断发展,智能体Agent在各种应用场景中发挥着越来越重要的作用。这篇文章将详细解析智能体Agent的记忆与决策框架,探讨其多模态感知、记忆、规划决策等各个环节的实现与应用。智能体Agent是人工智能领域的重要研究方向,广泛应用于自动驾驶、智能家居、金融分析等多个领域。本文将以一幅示意图为基础,详细解析智能体Agent在记忆与决策过程中各个模块的功能及其相互关系。并通过实际代码
- 人工智能中的线性代数与矩阵论学习秘诀之学习路线
audyxiao001
人工智能怎么学线性代数人工智能矩阵
线性代数和矩阵论的学习对于打好AI的理论基础非常重要,要加以重视和认真学习。下面给出学习的路线仅供参考,个人可以根据自己的知识储备、数学能力以及研究方向加以调整。具体的学习路线见图3-8。在初级入门阶段,主要打好线性代数的理论基础,建议中文和英文教材各选一本进行学习,即从初级入门教材1~4和5~8中各选一本进行学习。在中级提高阶段,主要弄清楚线性代数理论的本质和物理含义,特别是线性代数的几何意义,
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>