CNN,RNN,LSTM区别

(一)CNN 卷积神经网络

在机器学习中,卷积神经网络是一种深度前馈人工神经网络,已成功地应用于图像识别。 [1]

卷积神经网络,是一种前馈神经网络,人工神经元可以响应周围单元,可以进行大型图像处理。卷积神经网络包括卷积层和池化层。

卷积神经网络包括一维卷积神经网络、二维卷积神经网络以及三维卷积神经网络。一维卷积神经网络常应用于序列类的数据处理;二维卷积神经网络常应用于图像类文本的识别;三维卷积神经网络主要应用于医学图像以及视频类数据识别。

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 [2]  它包括卷积层(convolutional layer)和池化层(pooling layer)。

卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。

CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形,该部分功能主要由池化层实现。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

(二)RNN 循环神经网络​​​​​​​

既然我们已经有了人工神经网络和卷积神经网络,为什么还要循环神经网络? 
原因很简单,无论是卷积神经网络,还是人工神经网络,他们的前提假设都是:元素之间是相互独立的,输入与输出也是独立的,比如猫和狗。 
但现实世界中,很多元素都是相互连接的,比如股票随时间的变化,一个人说了:我喜欢旅游,其中最喜欢的地方是云南,以后有机会一定要去__________.这里填空,人应该都知道是填“云南“。因为我们是根据上下文的内容推断出来的,但机会要做到这一步就相当得难了。因此,就有了现在的循环神经网络,他的本质是:像人一样拥有记忆的能力。因此,他的输出就依赖于当前的输入和记忆。

(三)LSTM  长短期记忆网络

LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。

LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。

在 2015 年,谷歌通过基于CTC 训练的 LSTM 程序大幅提升了安卓手机和其他设备中语音识别的能力,其中就使用了Jürgen Schmidhuber的实验室在 2006 年发表的方法。百度也使用了 CTC;苹果的 iPhone 在 QuickType 和 Siri 中使用了 LSTM;微软不仅将 LSTM 用于语音识别,还将这一技术用于虚拟对话形象生成和编写程序代码等等。亚马逊 Alexa 通过双向 LSTM 在家中与你交流,而谷歌使用 LSTM 的范围更加广泛,它可以生成图像字幕,自动回复电子邮件,它包含在新的智能助手 Allo 中,也显著地提高了谷歌翻译的质量(从 2016 年开始)。目前,谷歌数据中心的很大一部分计算资源现在都在执行 LSTM 任务。

LSTM区别于RNN的地方,主要就在于它在算法中加入了一个判断信息有用与否的“处理器”,这个处理器作用的结构被称为cell。

一个cell当中被放置了三扇门,分别叫做输入门、遗忘门和输出门。一个信息进入LSTM的网络当中,可以根据规则来判断是否有用。只有符合算法认证的信息才会留下,不符的信息则通过遗忘门被遗忘。

说起来无非就是一进二出的工作原理,却可以在反复运算下解决神经网络中长期存在的大问题。目前已经证明,LSTM是解决长序依赖问题的有效技术,并且这种技术的普适性非常高,导致带来的可能性变化非常多。各研究者根据LSTM纷纷提出了自己的变量版本,这就让LSTM可以处理千变万化的垂直问题。


作者:红叶骑士之初
来源:CSDN
原文:https://blog.csdn.net/u011473714/article/details/81189633
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(学习笔记)