- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 一文读懂深度适配网络(DAN)
weixin_34088838
人工智能
这周五下午约见了机器学习和迁移学习大牛、清华大学的龙明盛老师。老师为人非常nice,思维敏捷,非常健谈!一不留神就谈了1个多小时,意犹未尽,学到了很多东西!龙明盛老师在博士期间(去年博士毕业)发表的文章几乎全部是A类顶会,他在学期间与世界知名学者杨强、PhilipS.Yu及MichaelI.Jordan多次合作,让我非常膜拜!这次介绍他在ICML-15上提出的深度适配网络。深度适配网络(DeepA
- 迁移学习之领域泛化
踩着上帝的小丑
#RL迁移学习人工智能机器学习
领域泛化领域泛化(DomainGeneralization)是机器学习和计算机视觉中的一个重要概念,它指的是模型能够从一个或多个源领域(sourcedomains)学习到的知识或模式,成功地应用到与训练时未见过的目标领域(targetdomain)上,即使这些领域之间存在分布差异。简单来说,领域泛化就是希望模型能够“举一反三”,不仅限于在特定数据集或特定环境下表现良好,而是能够跨越不同的环境或数据
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 探索XGBoost:深度集成与迁移学习
Echo_Wish
Python笔记Python算法迁移学习机器学习人工智能
导言深度集成与迁移学习是机器学习领域中的两个重要概念,它们可以帮助提高模型的性能和泛化能力。本教程将详细介绍如何在Python中使用XGBoost进行深度集成与迁移学习,包括模型集成、迁移学习的概念和实践等,并提供相应的代码示例。模型集成模型集成是一种通过组合多个模型来提高性能的技术。XGBoost提供了集成多个弱学习器的功能,可以通过设置booster参数来选择集成模型。以下是一个简单的示例:i
- 机器学习、深度学习、强化学习、迁移学习的关联与区别
半亩花海
学习笔记机器学习深度学习迁移学习学习人工智能
Hi,大家好,我是半亩花海。本文主要了解并初步探究机器学习、深度学习、强化学习、迁移学习的关系与区别,通过清晰直观的关系图展现出四种“学习”之间的关系。虽然这四种“学习”方法在理论和应用上存在着一定的区别,但它们之间也存在交叉和重叠,有时候也会结合使用来解决实际问题。一、四种“学习”1.机器学习机器学习是人工智能的一个子领域,研究如何让计算机系统利用数据和经验,来不断改善和优化自身的性能。其核心思
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- Python环境下基于深度判别迁移学习网络的轴承故障诊断
哥廷根数学学派
故障诊断信号处理深度学习python迁移学习开发语言
目前很多机器学习和数据挖掘算法都是基于训练数据和测试数据位于同一特征空间、拥有相同数据分布的假设。然而在现实应用中,该假设却未必存在。一方面,如果将利用某一领域数据训练得到的模型直接应用于新的目标领域,领域之间切实存在的数据差异可能会导致模型效果的骤然下降。另一方面,如果直接在新的目标领域中进行模型的训练,其数据的稀缺和标注的不完整可能会导致监督学习出现严重的过拟合问题,难以达到令人满意的学习效果
- 【深度学习:迁移学习】图像识别预训练模型的迁移学习
jcfszxc
深度学习知识专栏深度学习迁移学习人工智能
【深度学习:迁移学习】图像识别预训练模型的迁移学习什么是迁移学习?为什么不从头开始训练模型?迁移学习的优点是:如何使用预训练模型进行迁移学习:迁移学习的过程:实施迁移学习来构建人脸识别模型:模型的构建分为3个步骤:1.导入预训练模型并添加密集层。2.将训练数据加载到图像数据生成器中。3.通过预测验证数据标签加载训练模型和模型评估结论:本文的目的是使用迁移学习快速、轻松地解决图像识别问题。为了演示,
- 【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义 [2023 年 12 月更新]
jcfszxc
深度学习知识专栏人工智能迁移学习机器学习
【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义[2023年12月更新]定义、一般原则和禁止做法人工智能系统开发者基于风险的义务固定和通用人工智能开发人员(第3/28条)基础模型的提供者(第28b条)生成人工智能模型的提供商(第28b4条)高风险人工智能系统和分类(第6/7条)治理和执行12月修正案和批准最后的评论TL;DRAI窥视,准备迎接冲击!欧盟人工智能法案即将推出,这是世界
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- 深度学习之迁移学习实现神奇宝贝识别
starlet_kiss
机器学习深度学习人工智能迁移学习
经过之前深度学习的实践,无论是自己搭建的CNN网络也好,还是通过迁移学习调用官方的网络模型也好,都有其优点以及不足。本次实验通过对各种常用的CNN网络模型进行调用,了解一下它们的特点,对比一下在对于同一数据集进行分类时的准确率。本次所调用的CNN模型有:VGG16VGG19ResNetDensenet模型1.导入库importtensorflowastfimportnumpyasnpimportm
- LLM大模型常见问题解答(2)
lichunericli
LLM人工智能语言模型
对大模型基本原理和架构的理解大型语言模型如GPT(GenerativePre-trainedTransformer)系列是基于自注意力机制的深度学习模型,主要用于处理和生成人类语言。基本原理自然语言理解:模型通过对大量文本数据的预训练,学习到语言的统计规律,从而能够在不同的语言任务上表现出自然语言理解的能力。迁移学习:GPT类模型首先在一个广泛的数据集上进行预训练,以掌握语言的通用表示,然后可以在
- 大模型注入领域知识,模型体验和Token重复知识
lichunericli
LLM人工智能语言模型
1如何给LLM注入领域知识?给LLM(低层次模型,如BERT、GPT等)注入领域知识的方法有很多。以下是一些建议:数据增强:在训练过程中,可以通过添加领域相关的数据来增强模型的训练数据。这可以包括从领域相关的文本中提取示例、对现有数据进行扩充或生成新的数据。迁移学习:使用预训练的LLM模型作为基础,然后在特定领域的数据上进行微调。这样可以利用预训练模型学到的通用知识,同时使其适应新领域。领域专家标
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 基于NSGA-II的深度迁移学习
代码缝合怪
机器学习+深度学习迁移学习人工智能机器学习
深度迁移学习迁移学习是一种机器学习技术,它允许一个预训练的模型被用作起点,在此基础上进行微调以适应新的任务或数据。其核心思想是利用从一个任务中学到的知识来帮助解决另一个相关的任务,即使这两个任务的数据分布不完全相同。这种方法可以加速学习过程,提高模型性能,并减少对新数据标注的依赖。为什么要迁移大数据与少标注的矛盾在大数据的时代背景下,我们所面临的数据量呈现爆炸性增长,同时数据类型也变得日益复杂多样
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- 【PyTorch】实现迁移学习框架DaNN
cofisher
PHM项目实战--建模篇PyTorchpytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义MMD损失5、定义训练函数5.1nn.CrossEntropyLoss()5.2.detach()5.3.sizeVS.shape5.4.to(DEVICE)5.5.max()5.6optimizer.zero_grad()
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- 【多模态大模型】GLIP:零样本学习 + 目标检测 + 视觉语言大模型
Debroon
医学大模型:健康长寿学习目标检测人工智能
GLIP核心思想GLIP对比BLIP、BLIP-2、CLIP主要问题:如何构建一个能够在不同任务和领域中以零样本或少样本方式无缝迁移的预训练模型?统一的短语定位损失语言意识的深度融合预训练数据类型的结合语义丰富数据的扩展零样本和少样本迁移学习效果论文:https://arxiv.org/pdf/2112.03857.pdf代码:https://github.com/microsoft/GLIP核心
- 【PyTorch】实现迁移学习框架DANN
cofisher
PyTorchPHM项目实战--建模篇pytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义训练函数4.1nn.CrossEntropyLoss()4.2.detach()4.3.sizeVS.shape4.4.to(DEVICE)4.5.max()4.6optimizer.zero_grad()4.7len(data
- PyTorch 2.2 中文官方教程(十五)
绝不原创的飞龙
人工智能pytorch人工智能python
(beta)计算机视觉的量化迁移学习教程原文:pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0提示为了充分利用本教程,我们建议使用这个Colab版本。这将允许您尝试下面提供的信息。作者:ZafarTakhirov审阅者:RaghuramanKrishna
- Python 处理小样本数据的文档分类问题
田猿笔记
python知识库分类人工智能数据挖掘
在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例,你可以根据这个思路进一步研究并实现。#导入必要的库fromtransformersimportBertTokenizer,BertForSequenceClassificationim
- 【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来
无水先生
NLP高级和ChatGPT人工智能自然语言处理gpt语言模型
一、说明 欢迎阅读我们【文本到上下文#10】:此为最后一章。以我们之前对BERT和迁移学习的讨论为基础,将重点转移到更广阔的视角,包括语言模型的演变和未来,特别是生成式预训练转换器(GPT)及其在NLP中的重要作用。 在最后一章中,我们将探讨:语言模型概述:了解它们在NLP中的作用和演变。GPT模型:深入研究GPT谱系及其影响。大型语言模型(LLM):揭示潜力和挑战。现实世界的NLP应用:这些
- AI预测-注意力机制/多头注意力机制及其tensorflow实现
写代码的中青年
AI预测人工智能tensorflowpython深度学习keras
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- AI预测-迁移学习在时序预测任务上的tensoflow2.0实现
写代码的中青年
AI预测人工智能迁移学习机器学习神经网络pythontensorflow
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现文章目录AI预测相关目录一、迁移
- 迁移学习Transfer Learning的优缺点,以及在使用迁移学习的注意事项!
小桥流水---人工智能
机器学习算法Python程序代码迁移学习人工智能机器学习
迁移学习TransferLearning1.迁移学习的优点和缺点:2.使用迁移学习时,需要解决以下问题:1.迁移学习的优点和缺点:迁移学习是一种机器学习方法,它可以使机器学习模型利用已有任务的学习结果,来帮助解决相似的新任务。优点:知识转移:迁移学习的核心思想是将在一个领域学到的知识应用到另一个领域。这使得我们可以在已有的数据集上训练模型,然后将这个模型应用到新的、不同的数据集上。避免重新训练:对
- 迁移学习实现图片分类任务
Cuteboom
迁移学习分类人工智能
导入工具包importtimeimportosimportnumpyasnpfromtqdmimporttqdmimporttorchimporttorchvisionimporttorch.nnasnnimporttorch.nn.functionalasFimportmatplotlib.pyplotasplt%matplotlibinline#忽略烦人的红色提示importwarningsw
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置