- 科学与《易经》碰撞(4):阴阳算子:新型代数逻辑系统构建
1079986725
AI科学量子计算量子计算算法
核心论点阴阳互变规律可以抽象为一种新型代数逻辑系统中的基本算子。这种“阴阳算子”不仅满足传统布尔代数的基本性质,还引入了动态平衡与相互转化的特性,从而为模糊逻辑、量子逻辑和复杂系统建模提供了新的数学工具。研究路径阴阳算子的定义与公理化定义阴阳算子⊗:满足⊗²=¬(非操作),即连续两次阴阳转化回到原状态引入动态平衡条件:⊗(A)与⊗(¬A)之间存在对称关系构建包含⊗的代数系统:定义阴阳代数的基本公理
- 17-OpenCVSharp 中实现 Halcon 的 Points_Harris算子(Harris 角点检测)
观视界
#opencv人工智能计算机视觉图像处理矩阵
专栏地址:《OpenCV功能使用详解200篇》《OpenCV算子使用详解300篇》《Halcon算子使用详解300篇》内容持续更新,欢迎点击订阅在OpenCVSharp中实现类似于Halcon中的Points_Harris算子,实际上就是实现Harris角点检测算法。Harris角点检测算法是用于检测图像中的角点特征,可以用来进行图像匹配、物体识别等任务。Halcon提供的Points_Harri
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- 征程 6 VP简介与单算子实操
自动驾驶算法
1.如何理解VPVP,全称VisionProcess,指UCP中的视觉处理功能模块。Backends,指UCP框架中的可分配处理单元。VP模块主要用于模型的前后处理环节,在地平线统一架构中,多种硬件均已搭载了图像处理的算子,而VP模块将图像处理相关的硬件调用进行了封装,通过设置backend来选择不同的硬件方案(若不指定backend,UCP会自动适配负载更低的处理单元),从而平衡开发板负载。VP
- 【Attention】SEAttention
shanks66
Attention各种深度学习模块人工智能深度学习python
SEAttention摘要卷积神经网络(CNNs)的核心构建模块是卷积算子,它使网络能够通过在每一层的局部感受野内融合空间和通道信息来构建有价值的特征。此前大量研究聚焦于这种关系中的空间成分,试图通过在整个特征层级中提升空间编码质量来增强CNN的表征能力。在这项工作中,我们将重点放在通道关系上,并提出一种新颖的架构单元,称为“挤压与激励”(Squeeze-and-Excitation,简称SE)模
- 67-OpenCVSharp 创建实现Halcon的tile_images_offset算子(用于图像拼接,对每张图像设置偏移量)
搬码驿站
#opencv计算机视觉人工智能算法图像处理
以下是基于OpenCvSharp实现的Halcontile_images_offset算子的高性能函数。该函数不仅支持图像拼接,还允许对每张图像设置偏移量(offset),以灵活布局图像。代码中包含了详细注释和性能优化策略。为了优化运行时间和性能,我们可以从以下几个方面对代码进行改进:并行处理:利用多核CPU的能力,通过Parallel.For或其他并行技术加速图像复制操作。减少边界检查开销:在确
- onnx处理和TensorRT量化推理相关代码工具
天亮换季
人工智能算法深度学习
一.说明 在模型量化过程中,经常要使用一些工具对onnx或者量化后的模型(这里以TensorRT为例)进行推理,往往需要一些处理工具,比如:拆分或者合并onnx;修改onnx中的量算子QuantizeLinear的scale值;以及使用onnxruntime进行推理;TensorRT的序列化文件的inference;隐式量化生成量化校准表…现提供一些封装好的工具,作为记录,方便日后查阅使用"
- 计算机视觉图像处理面试笔试题整理——边缘检测
fpga和matlab
图像处理计算机视觉图像面试笔试计算机视觉面试笔试
目录1.边缘检测综述2.Roberts算子3.Prewitt算子4.Sobel算子5.Laplace算子6.Canny1.边缘检测综述边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。图像边缘是图像最基本的特征,所谓**边缘**(Edge)是指图像局部特性的不连续性。灰度或结构等信息的突变处
- 量子计算基础数学
诸葛思颖
量子计算与编程入门线性代数
文章目录前言一、向量表示和向量运算向量的表示向量的运算二、线性算子和矩阵线性算子几个简单的常用算子三、特征值和特征向量谱分解(SpecialDecomposition)谱分解的作用四、张量积与迹向量的张量积矩阵的张量积张量积操作规则迹(Trace)总结前言本文根据“本源溯知”平台>量子课堂>基本概念>5.本源量子基础数学教学视频进行知识整理,观看视频请点击:本源量子基础数学。一、向量表示和向量运算
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- flink分发策略详解
24k小善
flink大数据java
一、分发策略核心逻辑与分类Flink的数据分发策略决定了数据在算子间上下游的传输方式,直接影响作业的并行度利用、负载均衡、网络开销。其核心分类如下:1.本地通信策略Forward适用场景:上下游算子并行度相同且为一对一传输(如Source→Map)。特点:数据不跨节点,直接通过内存传递,零网络开销。限制:必须保证上下游并行度严格一致,否则抛出异常。Rescale适用场景:上下游并行度成整数倍关系(
- C#+Halcon 垂直拼接/裁切避免频繁开辟内存
单单单单点
C#Halcon图像处理c#图像处理
背景在做一些线扫相机且进行连续拍摄的项目时,由于图像扫描的随机性,部分场景下需要对图像进行拼接和裁切,获取完整的一个图像。由于halcon中crop相关的算子都是开辟新的内存方式,为了避免内存重复开辟,此处提供一个逻辑方式如下:优点:1)不需要每次都去新建内存,每次只需要做mem_copy的动作,减少耗时2)在完整图像中查找特征,避免特征由于随机性拍照不完整而丢失缺点:1)如果直接复用指针,可能会
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- 13-Halcon-- segment_contours_xld函数功能(用于将连续的亚像素轮廓(XLD)分割为直线段、圆弧或混合形状的局部片段)
搬码驿站
#《Halcon算子系列》算法人工智能机器学习
Halcon中segment_contours_xld算子详解1.核心功能segment_contours_xld用于将连续的亚像素轮廓(XLD)分割为直线段、圆弧或混合形状的局部片段。其目标是提取轮廓中具有明确几何特征的区域(如零件边缘、道路标线),用于后续的几何分析(长度、角度、曲率计算)或形状匹配。特点:支持多种分割模式(直线、圆弧、混合)。基于轮廓局部曲率或拟合误差进行分割。输出结果为多个
- Flink keyBy 算子源码与设计理念分析
java
大家好,我是大圣,很高兴又和大家见面。今天我们来探究一下Flink使用keyBy算子的时候到底发生了什么,看完这篇文章,你会豁然开朗。keyBy算子基本知识keyBy会发生什么专业解释keyBy使得相同key的数据会进入同一个并行子任务,每一个子任务可以处理多个不同的key。这样使数据保证了有序性,并且每个子任务直接相互隔离。我们确保了相同键的数据在逻辑上是有序的。即使在高度并行的环境中,具有相同
- 大语言模型原理与工程实践:大语言模型推理工程推理加速:算子优化
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,大语言模型(LargeLanguageModel,LLM)在自然语言处理(NLP)领域取得了显著的进展。其中,推理(Inference)过程是大语言模型的核心环节之一。然而,随着模型规模的不断扩大,推理过程中的计算复杂度和延时也逐渐成为制约模型应用的重要因素。因此,如何实现大语言模型推理工程的推理加速,成为研究者和工程师迫切需要解决的问题。2.核心概念与联系在本文中,我们将深入
- Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化
数据大包哥
#Sparkspark大数据分布式
Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化1.算子核心概念与分类体系1.1算子本质解析延迟执行机制:转换算子构建DAG,行动算子触发Job执行任务并行度:由RDD分区数决定(可通过spark.default.parallelism全局配置)执行位置优化:基于数据本地性的任务调度策略1.2官方分类标准
- Spark核心算子对比:`reduceByKey`与`groupByKey`源码级解析及生产调优指南
数据大包哥
大数据spark分布式
Spark核心算子对比:reduceByKey与groupByKey源码级解析及生产调优指南1.核心机制对比在Spark中,reduceByKey和groupByKey都是对键值对RDD(RDD[(K,V)])进行聚合操作的高阶算子,但两者的底层实现和性能表现截然不同。特性reduceByKeygroupByKeyShuffle前预聚合✅启用(mapSideCombine=true)❌禁用(map
- (图像梯度处理、图像边缘化检测、图像轮廓查找和绘制、透视变换、举例轮廓的外接边界框)
GWY_uu
计算机视觉人工智能图像处理
梯度处理的Sobel算子函数功能:Sobel算子是一种用于边缘检测的梯度计算方法,它通过计算图像在水平方向和垂直方向上的梯度来增强边缘信息。参数:src:输入图像。ddepth:输出图像的深度,通常选择为CV_16S以避免溢出。dx和dy:分别指定是否对x轴或y轴求导数,0表示不求导,1表示求一阶导数。ksize(可选):使用的Sobel核大小,默认为3。返回值:经过Sobel算子处理后的图像,通
- 【四】3D Object Model之测量Features——area_object_model_3d()/distance_object_model_3d()算子
cqy阳
#【四】3DObjectModel3d
欢迎来到本博客Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。具体食用方式:可以点击本专栏【Halcon算子快速查找】–>搜索你要查询的算子名称;或者点击Halcon算子汇总博客,即可食用。支持:如果觉得博主的文章还不错或者您用得到的话,可以悄悄关注一下博主哈,如果三连收藏支持就更好啦!这就是给予我最大的支持!文章目录学习
- 【四】3D Object Model之测量Features——get_object_model_3d_params()算子
cqy阳
#【四】3DObjectModel3d图像处理计算机视觉halcon
欢迎来到本博客Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。具体食用方式:可以点击本专栏【Halcon算子快速查找】–>搜索你要查询的算子名称;或者点击Halcon算子汇总博客,即可食用。支持:如果觉得博主的文章还不错或者您用得到的话,可以悄悄关注一下博主哈,如果三连收藏支持就更好啦!这就是给予我最大的支持!文章目录学习
- Sobel边缘检测算法:图像处理的关键技术
Fkvision
本文还有配套的精品资源,点击获取简介:Sobel算子是图像处理中用于边缘检测的经典方法,通过计算图像的梯度强度和方向来识别边界。本文详细介绍了Sobel算子的设计原理和实现步骤,包括图像的灰度转换、梯度计算、幅值和方向的确定,以及阈值处理和边缘细化。Sobel算子通过卷积操作实现对水平和垂直方向的边缘检测,被广泛应用于各种图像处理场景。文章还将涉及如何使用编程语言和库来实现Sobel边缘检测算法,
- 彻底理解数字图像处理中的卷积-以Sobel算子为例
守得云开现月明
图像处理图像处理
链接:原文出处作者:FreeBlues概述卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义.本文只讨论卷积在数字图像处理中的应用.在数字图像处理中,有一种基本的处理方法:线性滤波.待处理的平面数字图像可被看做一个大矩阵,图像的每个像素对应着矩阵的每个元素,假设我们平面的分辨率是1024*768,那么对应的大矩阵的行数=1024,列数=768.用于滤波的是一个滤波器小矩阵(也叫卷积核),
- 常见的图像处理算法:Sobel边缘检测
资深流水灯工程师
机器视觉图像处理算法计算机视觉
Sobel算子是一个主要用于边缘检测的离散微分算子。它结合了高斯平滑和微分求导,用来计算灰度图像的近似梯度。Sobel算子是一个主要用于边缘检测的离散微分算子(discretedifferentiationoperator)。它结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度。在图像的任何一点使用此算子,都将会产生对应的梯度矢量或是其法矢量。Sobel算子的两个3*3内核为:
- 从零开始 CMake 学习笔记 (A)hello-cmake
OOOrchid
混合计算c++cmake
从零开始CMake学习笔记(A)hello-cmake最近基于Caffe2C++项目开发算子时,接触到了C++,查找的资料基本又杂又多,官方文档又缺少自己动手的小实验,因此有必要跟着github上的案例学习学习,顺带记录下自己的学习笔记留待后用。定义:CMake可以编译源代码、制作程序库、产生适配器(wrapper)、还可以用任意的顺序建构执行档。CMake支持in-place建构(二进档和源代码
- ATB概念之:算子tiling
人工智能深度学习
1什么是算子tiling在计算机科学和深度学习领域,算子tiling(有时也被称作操作符tiling或者循环tiling)是一种优化技术,主要用于提高计算效率,尤其是在处理大规模张量运算时。Tiling技术通常用于将大的计算任务分解成更小的块,这些小块可以在内存中更高效地处理,或者更适合并行计算环境。在深度学习框架中,算子tiling可以应用于不同的场景:内存优化:通过将大的张量切分成更小的部分,
- 全面列举OpenCV 各模块中常见的算子
搬码驿站
《OpenCV学习笔记》opencv人工智能计算机视觉图像处理
专栏地址:《OpenCV功能使用详解200篇》《OpenCV算子使用详解300篇》《Halcon算子使用详解300篇》内容持续更新,欢迎点击订阅OpenCVSharp是OpenCV的.NET封装,几乎涵盖了OpenCV的所有功能。OpenCV本身包含了大量的模块(或称子模块),每个模块都包含了不同的算子和功能。下面是OpenCVSharp中所有模块的详细列举,并描述了各模块中常见的算子(函数)。此
- 【OpenCV】OpenCV 中各模块及其算子的详细分类
de之梦-御风
OpenCV4Net.net技术opencv分类人工智能
OpenCV的最新版本包含了500多个算子,这些算子覆盖了图像处理、计算机视觉、机器学习、深度学习、视频分析等多个领域。为了方便使用,OpenCV将这些算子分为多个模块,每个模块承担特定的功能。以下是OpenCV中各模块及其算子的详细分类:1.核心模块(Core)功能:提供基础数据结构(如Mat)、数学运算、内存管理、输入输出等基本操作。常用算子:数学运算:cv::add,cv::subtract
- 电路笔记(信号):串联电容变小、并联电容增大的分析和计算
FakeOccupational
硬件和移动端信号
如在数字滤波电路的拉普拉斯变换与零极点分析中的推导,电容的容抗为1jωC\frac{1}{j\omegaC}jωC1,对于C1C_1C1和C2C_2C2的串联阻抗:1jωC1+1jωC2=k∗×(1C1+1C2)=k∗×1C1∗C2C1+C2(k=1jω)\frac{1}{j\omegaC_1}+\frac{1}{j\omegaC_2}=k*\times(\frac{1}{C_1}+\frac{1
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs