Hive表生成函数explode讲解

http://m.mamicode.com/info-detail-2333985.html

Hive中的表分析函数接受零个或多个输入,然后产生多列或多行输出。

1.explode函数

explode函数以array类型数据输入,然后对数组中的数据进行迭代,返回多行结果,一行一个数组元素值

ARRAY函数是将一列输入转换成一个数组输出。

hive (jimdb)> SELECT ARRAY(1,2,3) FROM dual;

OK

_c0

[1,2,3]

Time taken: 0.448 seconds, Fetched: 1 row(s)

SELECT explode(array(1,2,3)) AS element;

hive (jimdb)> SELECT explode(array(1,2,3)) AS element;

OK

element

1

2

3

Time taken: 0.327 seconds, Fetched: 3 row(s)

创建一张测试表单:

CREATE TABLE udtf_test(name STRING,subordinates ARRAY)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘\t‘

COLLECTION ITEMS TERMINATED BY ‘,‘;

hive (jimdb)> select * from udtf_test;

OK

udtf_test.name udtf_test.subordinates

jim5 ["james","datacloase"]

jim4 ["james","datacloase"]

jim3 ["james","datacloase"]

jim2 ["james","datacloase"]

jim ["james","datacloase"]

Time taken: 0.348 seconds, Fetched: 5 row(s)

我执行下面这条语句,希望将字段subordinates拆分开,新生成一列,但是语句报错:

select name,explode(subordinates) from udtf_test;

 

hive (jimdb)> select name,explode(subordinates) from udtf_test;

FAILED: SemanticException [Error 10081]: UDTF‘s are not supported outside the SELECT clause, nor nested in expressions

Hive的表生成函数只是生成了一种数据的展示方式,而无法在表中产生一个其他的列。

因此这块需要使用LATERAL VIEW功能来进行处理。LATERAL VIEW将explode生成的结果当做一个视图来处理。

 

SELECT name, sub 

FROM udtf_test

LATERAL VIEW explode(subordinates) subView AS sub;

在这里LATERAL VIEW 是将 explode结果转换成一个视图subView,在视图中的单列列名定义为sub,然后在查询的时候引用这个列名就能够查到。

 

hive (jimdb)> SELECT name, sub 

> FROM udtf_test

> LATERAL VIEW explode(subordinates) subView AS sub;

OK

name sub

jim5 james

jim5 datacloase

jim4 james

jim4 datacloase

jim3 james

jim3 datacloase

jim2 james

jim2 datacloase

jim james

jim datacloase

Time taken: 0.399 seconds, Fetched: 10 row(s)

创建一张测试表:

drop table test1;

create table test1(name string,phonenumber string)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘\t‘;

 

--需求是过滤掉该表中电话号码中0-9的某个数字在电话号码中出现6次及以上的号码,然后将正常的号码返回。

hive (jimdb)> select * from test1;

OK

test1.name test1.phonenumber

‘jim he‘ ‘18191512076‘

‘xiaosong‘ ‘18392988059‘

‘jingxianghua‘ ‘18118818818‘

‘donghualing‘ ‘17191919999‘

 

执行语句如下:

SELECT c.name,c.phonenumber

FROM 

(SELECT dd.name,dd.phonenumber,MAX(dd.cn) 

FROM (SELECT d.name,d.phonenumber,d.m, COUNT(*) cn

FROM (SELECT name,phonenumber,m FROM test1 LATERAL VIEW explode(split(phonenumber,‘‘)) n AS m) d 

GROUP BY d.name,d.phonenumber,d.m) dd

GROUP BY dd.name,dd.phonenumber HAVING MAX(dd.cn) <=5) c;

 

hive (jimdb)> SELECT c.name,c.phonenumber

> FROM 

> (SELECT dd.name,dd.phonenumber,MAX(dd.cn) 

> FROM (SELECT d.name,d.phonenumber,d.m, COUNT(*) cn

> FROM (SELECT name,phonenumber,m FROM test1 LATERAL VIEW explode(split(phonenumber,‘‘)) n AS m) d 

> GROUP BY d.name,d.phonenumber,d.m) dd

> GROUP BY dd.name,dd.phonenumber HAVING MAX(dd.cn) <=5) c;

Query ID = hadoop_20180611200632_14d3d30b-e64f-4aee-a7ca-fffa66049890

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data size: 1

In order to change the average load for a reducer (in bytes):

set hive.exec.reducers.bytes.per.reducer=

In order to limit the maximum number of reducers:

set hive.exec.reducers.max=

In order to set a constant number of reducers:

set mapreduce.job.reduces=

Job running in-process (local Hadoop)

2018-06-11 20:06:35,732 Stage-1 map = 100%, reduce = 100%

Ended Job = job_local1118441439_0004

MapReduce Jobs Launched: 

Stage-Stage-1: HDFS Read: 3004 HDFS Write: 0 SUCCESS

Total MapReduce CPU Time Spent: 0 msec

OK

c.name c.phonenumber

‘jim he‘ ‘18191512076‘

‘xiaosong‘ ‘18392988059‘

Time taken: 2.872 seconds, Fetched: 2 row(s)

你可能感兴趣的:(HIVE)