树是由N个结点构成的有限集合,每个节点都有0个或者多个互不相交的树,称为结点的子树。
度为2的树,子树有左右顺序之分。
一棵二叉树,该树的带权路径长度达到最小,称为最优二叉树,也称为哈夫曼树(Huffman Tree)。
每次把权值最小的两棵二叉树合并,左节点权值比右节点小。
给定一段字符串,利用哈夫曼树对字符串进行编码,使得该字符串的编码存储空间最少。
public class HuffmanTree {
public static class Node {
E data; //数据
int weight; //权重
Node leftChild; //左子节点
Node rightChild;//右子节点
public Node(E data, int weight) {
super();
this.data = data;
this.weight = weight;
}
public String toString() {
return "Node[" + weight + ",data=" + data + "]";
}
}
public static void main(String[] args) {
//创建样例数据
List nodes = createSampleData();
//创建哈弗曼树
Node root = createTree(nodes);
printTree(root);
}
public static void printTree(Node root){
System.out.println(root.toString());
if (root.leftChild !=null) {
System.out.print("left:");
printTree(root.leftChild);
}
if (root.rightChild !=null) {
System.out.print("right:");
printTree(root.rightChild);
}
}
public static Node createTree(List nodes){
while(nodes.size()>1){
sort(nodes); //根据权重排序
Node left = nodes.get(0);//权重最小的
Node right = nodes.get(1);//权重第二小的
//生成一个新的节点(父节点),父节点的权重为两个子节点的之和
Node parent = new Node(null,left.weight+right.weight);
//树的连接,让子节点与父节点进行连接
parent.leftChild = left;
parent.rightChild = right;
nodes.remove(0);//删除最小的
nodes.remove(0);//删除第二小的。
nodes.add(parent);
}
return nodes.get(0); //返回根节点
}
public static List createSampleData(){
List nodes = new ArrayList();
nodes.add(new Node("a", 10));
nodes.add(new Node("b", 15));
nodes.add(new Node("c", 12));
nodes.add(new Node("d", 3));
nodes.add(new Node("e", 4));
nodes.add(new Node("f", 13));
nodes.add(new Node("g", 1));
return nodes;
}
public static void sort(List nodes) {
if (nodes.size() <= 1)
return ;
for (int i = 0; i < nodes.size(); i++){
for (int j = 0; j < nodes.size() - 1 - i; j++){
if (nodes.get(j + 1).weight < nodes.get(j).weight) {
Node temp = nodes.get(j + 1);
nodes.set(j+1,nodes.get(j));
nodes.set(j,temp);
}
}
}
return ;
}
}
查找的值X从根节点开始
插入的值X从根节点开始查找
删除操作类似,不介绍了。
平衡二叉树(AVL树,Balance Binary Search Tree )是一 棵二叉排序树,它的左右两个子树的高度差(平衡因子)的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。这样树的高度最低,因为树查找的效率决定于树的高度。
一颗平衡二叉树,如果新插入一个元素,会有两个结果:平衡没有被打破,不用调整;平衡被打破,需要调整。
插入节点在失衡结点的左子树的左边,只需要经过一次左旋即可达到平衡。
/*
* LL旋转
* 左旋示意图(对结点20进行左旋)
* 30 20
* / \ / \
* 20 40 10 30
* / \ --LL旋转- / / \
* 10 25 5 25 40
* /
* 5
*
*/
插入节点在失衡结点的右子树的右边,只需要经过一次右旋即可达到平衡。
/*
* RR旋转
* 右旋示意图(对结点30进行左旋)
* 20 30
* / \ / \
* 10 30 20 40
* / \ --RR旋转- / \ \
* 25 40 10 25 50
* \
* 50
*
*/
插入节点在失衡结点的左子树的右边,失衡结点的左子树先做RR旋转,失衡结点再做LL旋转也可达到平衡。
插入节点在失衡结点的右子树的左边,失衡结点的右子树先做LL旋转,失衡结点再做RR旋转也可达到平衡。
public class AVLTree {
//节点
public static class Node {
int data; //数据
Node leftChild; //左子节点
Node rightChild;//右子节点
int height; // 记录该节点所在的高度
public Node(int data) {
this.data = data;
}
}
//获取节点的高度
public static int getHeight(Node p){
return p == null ? -1 : p.height; // 空树的高度为-1
}
public static void main(String[] args) {
Node root = null;
root = insert(root,30);
root = insert(root,20);
root = insert(root,40);
root = insert(root,10);
root = insert(root,25);
//插入节点在失衡结点的左子树的左边
root = insert(root,5);
//打印树,按照先打印左子树,再打印右子树的方式
printTree(root);
}
public static void printTree(Node root) {
System.out.println(root.data);
if(root.leftChild !=null){
System.out.print("left:");
printTree(root.leftChild);
}
if(root.rightChild !=null){
System.out.print("right:");
printTree(root.rightChild);
}
}
// AVL树的插入方法
public static Node insert(Node root, int data) {
if (root == null) {
root = new Node(data);
return root;
}
if (data <= root.data) { // 插入到其左子树上
root.leftChild = insert(root.leftChild, data);
//平衡调整
if (getHeight(root.leftChild) - getHeight(root.rightChild) > 1) {
if (data <= root.leftChild.data) { // 插入节点在失衡结点的左子树的左边
System.out.println("LL旋转");
root = LLRotate(root); // LL旋转调整
}else{ // 插入节点在失衡结点的左子树的右边
System.out.println("LR旋转");
root = LRRotate(root);
}
}
}else{ // 插入到其右子树上
root.rightChild = insert(root.rightChild, data);
//平衡调整
if(getHeight(root.rightChild) - getHeight(root.leftChild) > 1){
if(data <= root.rightChild.data){//插入节点在失衡结点的右子树的左边
System.out.println("RL旋转");
root = RLRotate(root);
}else{
System.out.println("RR旋转");//插入节点在失衡结点的右子树的右边
root = RRRotate(root);
}
}
}
//重新调整root节点的高度值
root.height = Math.max(getHeight(root.leftChild), getHeight(root.rightChild)) + 1;
return root;
}
// LR旋转
public static Node LRRotate(Node p){
p.leftChild = RRRotate(p.leftChild); // 先将失衡点p的左子树进行RR旋转
return LLRotate(p); // 再将失衡点p进行LL平衡旋转并返回新节点代替原失衡点p
}
// RL平衡旋转
public static Node RLRotate(Node p){
p.rightChild = LLRotate(p.rightChild); // 先将失衡点p的右子树进行LL平衡旋转
return RRRotate(p); // 再将失衡点p进行RR平衡旋转并返回新节点代替原失衡点p
}
/*
* LL旋转
* 左旋示意图(对结点20进行左旋)
* 30 20
* / \ / \
* 20 40 10 30
* / \ --LL旋转- / / \
* 10 25 5 25 40
* /
* 5
*
*/
public static Node LLRotate(Node p){ // 30为失衡点
Node lsubtree = p.leftChild; //失衡点的左子树的根结点20作为新的结点
p.leftChild = lsubtree.rightChild; //将新节点的右子树25成为失衡点30的左子树
lsubtree.rightChild = p; // 将失衡点30作为新结点的右子树
// 重新设置失衡点30和新节点20的高度
p.height = Math.max(getHeight(p.leftChild), getHeight(p.rightChild)) + 1;
lsubtree.height = Math.max(getHeight(lsubtree.leftChild), p.height) + 1;
return lsubtree; // 新的根节点取代原失衡点的位置
}
/*
* RR旋转
* 右旋示意图(对结点30进行左旋)
* 20 30
* / \ / \
* 10 30 20 40
* / \ --RR旋转- / \ \
* 25 40 10 25 50
* \
* 50
*
*/
// RR旋转
public static Node RRRotate(Node p){ // 20为失衡点
Node rsubtree = p.rightChild; //失衡点的右子树的根结点30作为新的结点
p.rightChild = rsubtree.leftChild; //将新节点的左子树25成为失衡点20的右子树
rsubtree.leftChild = p; // 将失衡点20作为新结点的左子树
// 重新设置失衡点20和新节点30的高度
p.height = Math.max(getHeight(p.leftChild), getHeight(p.rightChild)) + 1;
rsubtree.height = Math.max(getHeight(rsubtree.leftChild), getHeight(rsubtree.rightChild)) + 1;
return rsubtree; // 新的根节点取代原失衡点的位置
}
}
红黑树(R-B Tree,Red-Black Tree)它一种特殊的二叉查找树,同时具备以下特征:
插入原则:因为插入节点的颜色如果为黑肯定破坏红黑树性质5,所以每次插入的点首先都是红结点。
先贴一段别人代码,有时间再研究下。
public class RBTree> {
private RBTNode mRoot; // 根结点
private static final boolean RED = false;//红色是false
private static final boolean BLACK = true;//黑色是true
public class RBTNode> {
boolean color; // 颜色
T key; // 关键字(键值)
RBTNode left; // 左孩子
RBTNode right; // 右孩子
RBTNode parent; // 父结点
public RBTNode(T key, boolean color, RBTNode parent, RBTNode left, RBTNode right) {
this.key = key;
this.color = color;
this.parent = parent;
this.left = left;
this.right = right;
}
public T getKey() {
return key;
}
public String toString() {
return ""+key+(this.color==RED?"(R)":"B");
}
}
public RBTree() {
mRoot=null;
}
private RBTNode parentOf(RBTNode node) {
return node!=null ? node.parent : null;
}
private boolean colorOf(RBTNode node) {
return node!=null ? node.color : BLACK;
}
private boolean isRed(RBTNode node) {
return ((node!=null)&&(node.color==RED)) ? true : false;
}
private boolean isBlack(RBTNode node) {
return !isRed(node);
}
private void setBlack(RBTNode node) {
if (node!=null)
node.color = BLACK;
}
private void setRed(RBTNode node) {
if (node!=null)
node.color = RED;
}
private void setParent(RBTNode node, RBTNode parent) {
if (node!=null)
node.parent = parent;
}
private void setColor(RBTNode node, boolean color) {
if (node!=null)
node.color = color;
}
/*
* (递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode search(RBTNode x, T key) {
if (x==null)
return x;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}
public RBTNode search(T key) {
return search(mRoot, key);
}
/*
* (非递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode iterativeSearch(RBTNode x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}
return x;
}
public RBTNode iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}
/*
* 查找最小结点:返回tree为根结点的红黑树的最小结点。
*/
private RBTNode minimum(RBTNode tree) {
if (tree == null)
return null;
while(tree.left != null)
tree = tree.left;
return tree;
}
public T minimum() {
RBTNode p = minimum(mRoot);
if (p != null)
return p.key;
return null;
}
/*
* 查找最大结点:返回tree为根结点的红黑树的最大结点。
*/
private RBTNode maximum(RBTNode tree) {
if (tree == null)
return null;
while(tree.right != null)
tree = tree.right;
return tree;
}
public T maximum() {
RBTNode p = maximum(mRoot);
if (p != null)
return p.key;
return null;
}
/*
* 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
*/
public RBTNode successor(RBTNode x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right);
// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
RBTNode y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
}
return y;
}
/*
* 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
*/
public RBTNode predecessor(RBTNode x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left);
// 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
RBTNode y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
}
return y;
}
/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* 13 17
* / \ / \
* nul 17 13 27
* / \ --(左旋)-. / \ / \
* nul 27 nul nul nul nul
* / \
* nul nul
*
*
*/
private void leftRotate(RBTNode x) {
// 设置x的右孩子为y
RBTNode y = x.right;
// 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x.right = y.left;
if (y.left != null)
y.left.parent = x;
// 将 “x的父亲” 设为 “y的父亲”
y.parent = x.parent;
if (x.parent == null) {
this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
} else {
if (x.parent.left == x)
x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
}
// 将 “x” 设为 “y的左孩子”
y.left = x;
// 将 “x的父节点” 设为 “y”
x.parent = y;
}
/*
* 对红黑树的节点(8)进行右旋转
*
* 右旋示意图(对节点8进行右旋):
* 13 8
* / \ / \
* 8 nul 1 13
* / \ --(右旋)- / \ / \
* 1 nul nul nul nul nul
* / \
* nul nul
*
*/
private void rightRotate(RBTNode y) {
// 设置x是当前节点的左孩子。
RBTNode x = y.left;
// 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y.left = x.right;
if (x.right != null)
x.right.parent = y;
// 将 “y的父亲” 设为 “x的父亲”
x.parent = y.parent;
if (y.parent == null) {
this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
} else {
if (y == y.parent.right)
y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
}
// 将 “y” 设为 “x的右孩子”
x.right = y;
// 将 “y的父节点” 设为 “x”
y.parent = x;
}
/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的z
*/
private void insertFixUp(RBTNode node) {
RBTNode parent, gparent;
// 若“父节点存在,并且父节点的颜色是红色”
while (((parent = parentOf(node))!=null) && isRed(parent)) {
gparent = parentOf(parent);//祖父节点
//若“父节点”是“祖父节点的左孩子”
if (parent == gparent.left) {
RBTNode uncle = gparent.right;
if ((uncle!=null) && isRed(uncle)) { // 情况2:叔叔节点是红色
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
}
// 情况5:叔叔是黑色,且当前节点是右孩子(两次旋转,先左后右)
if (parent.right == node) {
RBTNode tmp;
leftRotate(parent); //左旋转
tmp = parent;
parent = node;
node = tmp;
}
// 情况3:叔叔是黑色,且当前节点是左孩子。(一次右旋转)
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
} else { //若“父节点”是“祖父节点的右孩子”
RBTNode uncle = gparent.left;
if ((uncle!=null) && isRed(uncle)) { // 情况2:叔叔节点是红色
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
}
// 情况6:叔叔是黑色,且当前节点是左孩子(两次旋转,先右后左)
if (parent.left == node) {
RBTNode tmp;
rightRotate(parent);
tmp = parent;
parent = node;
node = tmp;
}
// 情况4:叔叔是黑色,且当前节点是右孩子。(一次左旋转)
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
}
}
// 将根节点设为黑色
setBlack(this.mRoot);
}
/*
* 将结点插入到红黑树中
*
* 参数说明:
* node 插入的结点
*/
private void insert(RBTNode node) {
int cmp;
RBTNode y = null;
RBTNode x = this.mRoot;
// 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != null) {
y = x;
cmp = node.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
}
node.parent = y;
if (y!=null) {
cmp = node.key.compareTo(y.key);
if (cmp < 0)
y.left = node;
else
y.right = node;
} else {
this.mRoot = node;
}
// 2. 设置节点的颜色为红色
node.color = RED;
// 3. 将它重新修正为一颗二叉查找树
insertFixUp(node);
}
/*
* 新建结点(key),并将其插入到红黑树中
*
* 参数说明:
* key 插入结点的键值
*/
public void insert(T key) {
RBTNode node=new RBTNode(key,BLACK,null,null,null);
// 如果新建结点失败,则返回。
if (node != null)
insert(node);
}
/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 待修正的节点
*/
private void removeFixUp(RBTNode node, RBTNode parent) {
RBTNode other;
while ((node==null || isBlack(node)) && (node != this.mRoot)) {
if (parent.left == node) {
other = parent.right;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
leftRotate(parent);
other = parent.right;
}
if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else {
if (other.right==null || isBlack(other.right)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.left);
setRed(other);
rightRotate(other);
other = parent.right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.right);
leftRotate(parent);
node = this.mRoot;
break;
}
} else {
other = parent.left;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
rightRotate(parent);
other = parent.left;
}
if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else {
if (other.left==null || isBlack(other.left)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.right);
setRed(other);
leftRotate(other);
other = parent.left;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.left);
rightRotate(parent);
node = this.mRoot;
break;
}
}
}
if (node!=null)
setBlack(node);
}
/*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* node 删除的结点
*/
private void remove(RBTNode node) {
RBTNode child, parent;
boolean color;
// 被删除节点的"左右孩子都不为空"的情况。
if ( (node.left!=null) && (node.right!=null) ) {
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode replace = node;
// 获取后继节点
replace = replace.right;
while (replace.left != null)
replace = replace.left;
// "node节点"不是根节点(只有根节点不存在父节点)
if (parentOf(node)!=null) {
if (parentOf(node).left == node)
parentOf(node).left = replace;
else
parentOf(node).right = replace;
} else {
// "node节点"是根节点,更新根节点。
this.mRoot = replace;
}
// child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace.right;
parent = parentOf(replace);
// 保存"取代节点"的颜色
color = colorOf(replace);
// "被删除节点"是"它的后继节点的父节点"
if (parent == node) {
parent = replace;
} else {
// child不为空
if (child!=null)
setParent(child, parent);
parent.left = child;
replace.right = node.right;
setParent(node.right, replace);
}
replace.parent = node.parent;
replace.color = node.color;
replace.left = node.left;
node.left.parent = replace;
if (color == BLACK)
removeFixUp(child, parent);
node = null;
return ;
}
if (node.left !=null) {
child = node.left;
} else {
child = node.right;
}
parent = node.parent;
// 保存"取代节点"的颜色
color = node.color;
if (child!=null)
child.parent = parent;
// "node节点"不是根节点
if (parent!=null) {
if (parent.left == node)
parent.left = child;
else
parent.right = child;
} else {
this.mRoot = child;
}
if (color == BLACK)
removeFixUp(child, parent);
node = null;
}
/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 红黑树的根结点
* z 删除的结点
*/
public void remove(T key) {
RBTNode node;
if ((node = search(mRoot, key)) != null)
remove(node);
}
/*
* 销毁红黑树
*/
private void destroy(RBTNode tree) {
if (tree==null)
return ;
if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right);
tree=null;
}
public void clear() {
destroy(mRoot);
mRoot = null;
}
/*
* 打印"红黑树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(RBTNode tree, T key, int direction) {
if(tree != null) {
if(direction==0) // tree是根节点
System.out.printf("%2d(B) is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left");
print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
}
public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
/*
* 前序遍历"红黑树"
*/
private void preOrder(RBTNode tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}
public void preOrder() {
preOrder(mRoot);
}
/*
* 中序遍历"红黑树"
*/
private void inOrder(RBTNode tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}
public void inOrder() {
inOrder(mRoot);
}
/*
* 后序遍历"红黑树"
*/
private void postOrder(RBTNode tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}
public void postOrder() {
postOrder(mRoot);
}
}