keras非线性回归,实例,两种加激活函数的方式

import keras
import numpy as np
import matplotlib.pyplot as plt
#Sequential 按顺序构成的模型
from keras.models import Sequential#Sequential是模型结构,输入层,隐藏层,输出层
#Dense 全连接层,Activation激活函数
from keras.layers import Dense,Activation
from keras.optimizers import SGD

x_data=np.linspace(-0.5,0.5,200)#从-0.5到0.5范围内生成200个随机点
noise=np.random.normal(0,0.02,x_data.shape)#生成和x_data形状一样的噪声
y_data=np.square(x_data)+noise

#显示随机点
#plt.scatter(x_data,y_data)
#plt.show()

#构建一个顺序模型
model=Sequential()

#1-10-1,添加一个隐藏层
model.add(Dense(units=10,input_dim=1,activation='relu'))#units是隐藏层,输出维度,输出y,input_dim是输入维度,输入x
#model.add(Activation('tanh'))#给这一层添加一个双曲正切激活函数tanh函数
model.add(Dense(units=1,input_dim=10,activation='relu'))#input_dim可以不写,它可以识别到上一句的输出是10维
#model.add(Activation('tanh'))#给这一层添加一个双曲正切激活函数tanh函数
#定义优化器
sgd=SGD(lr=0.3)#学习率提高到0.3,训练速度会加快

model.compile(optimizer=sgd,loss='mse')#编译这个模型,sgd是随机梯度下降法,优化器.mse是均方误差



#训练模型
for step in range(5001):
    #每次训练一个批次
    cost=model.train_on_batch(x_data,y_data)#代价函数的值,其实就是loss
    #每500个batch打印一次cost值
    if step %500==0:
        print('cost:',cost)

#打印权值和偏置值
W,b=model.layers[0].get_weights()#线性回归,只有一层
print('W:',W,'b:',b)

#x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data)

#显示随机点s
plt.scatter(x_data,y_data)
#显示预测结果
plt.plot(x_data,y_pred,'r-',lw=3)#r-表示红色的线,lw表示线宽
plt.show()

 

结果:
cost: 0.0077051604
cost: 0.0004980223
cost: 0.00047812634
cost: 0.00047762066
cost: 0.00047761563
cost: 0.00047761557
cost: 0.0004776156
cost: 0.0004776156
cost: 0.0004776156
cost: 0.00047761566
cost: 0.0004776156
W: [[ 0.37828678  0.37509003  0.1847014  -0.46519393 -0.6347979  -0.70865685
   0.55382997 -0.66780925  0.08229994  0.5980157 ]] b: [-0.00412499 -0.01216194  0.01939214 -0.03005166 -0.00475936 -0.00794064
 -0.00015427 -0.01620528  0.08056344 -0.01741577]
 

keras非线性回归,实例,两种加激活函数的方式_第1张图片

 

 

你可能感兴趣的:(keras非线性回归,实例,两种加激活函数的方式)