介绍什么的请参考:利用Hog特征和SVM分类器进行行人检测我只说一下Opencv3.0里面,需要注意的地方。
本人接触OpenCV很短的时间,新手。
OpenCV3.0相比2.X,接口更加清晰,还是有很大的改动的。
主要有几个需要注意的地方:
1. sampleLabelMat的数据类型必须为有符号整数型。
2. 加载已经训练好的分类器,需要注意:
svm = SVM::load
// svm->load
3. 一些新的接口:
Mat svecsmat = svm ->getSupportVectors();//svecsmat元素的数据类型为float
int svdim = svm ->getVarCount();//特征向量位数
4. getDecisionFunction()
Mat alphamat = Mat::zeros(numofsv, svdim, CV_32F);//alphamat和svindex必须初始化,否则getDecisionFunction()函数会报错
Mat svindex = Mat::zeros(1, numofsv,CV_64F);
Mat Result;
double rho = svm ->getDecisionFunction(0, alphamat, svindex);
5. alphamat.convertTo(alphamat, CV_32F);//将alphamat元素的数据类型重新转成CV_32F,经过getDecisionFunction后alphamat的数据类型会发生改变,为了后续的矩阵乘法,这里要修改其元素的数据类型
6. 还有一个问题,没想明白,为什么Result = -1 * alphamat * svecsmat;
要乘以-1????求告知,谢谢!
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
using namespace cv::ml;
#define PosSamNO 2400 //original positive num
#define NegSamNO 2400 // original negative num
#define HardExampleNO 3600 // hard negative num
#define AugPosSamNO 2400 //Aug positive num
#define TRAIN false
#define CENTRAL_CROP true
int main()
{
//winsize(64,128),blocksize(16,16),blockstep(8,8),cellsize(8,8),bins9
HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);
int DescriptorDim;
Ptr svm = SVM::create();
if(TRAIN)
{
string ImgName;
ifstream finPos("DATA/INRIAPerson96X160PosList.txt");
ifstream finNeg("DATA/NoPersonFromINRIAList.txt");
if (!finPos || !finNeg)
{
cout << "Pos/Neg imglist reading failed..." << endl;
return 1;
}
Mat sampleFeatureMat;
Mat sampleLabelMat;
//loading original positive examples...
for(int num=0; num < PosSamNO && getline(finPos,ImgName); num++)
{
cout <<"Now processing original positive image: " << ImgName << endl;
ImgName = "DataSet/INRIAPerson/train_64x128_H96/pos/" + ImgName;
Mat src = imread(ImgName);
if(CENTRAL_CROP)
src = src(Rect(16,16,64,128));
vector<float> descriptors;
hog.compute(src, descriptors, Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
if( 0 == num )
{
DescriptorDim = descriptors.size();
sampleFeatureMat = Mat::zeros(PosSamNO +AugPosSamNO +NegSamNO +HardExampleNO, DescriptorDim, CV_32FC1);
sampleLabelMat = Mat::zeros(PosSamNO +AugPosSamNO +NegSamNO +HardExampleNO, 1, CV_32SC1);//sampleLabelMat的数据类型必须为有符号整数型
}
//将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
for(int i=0; ifloat>(num,i) = descriptors[i];
sampleLabelMat.at<int>(num,0) = 1;
}
finPos.close();
//positive examples augmenting...
if (AugPosSamNO > 0)
{
ifstream finAug("DATA/AugPosImgList.txt");
if (!finAug)
{
cout << "Aug positive imglist reading failed..." << endl;
return 1;
}
for (int num = 0; num < AugPosSamNO && getline(finAug, ImgName); ++num)
{
cout << "Now processing Aug positive image: " << ImgName << endl;
ImgName = "DATA/INRIAPerson/AugPos/" + ImgName;
Mat src = imread(ImgName);
vector<float> descriptors;
hog.compute(src, descriptors, Size(8,8));
for (int i = 0; i < DescriptorDim; ++i)
sampleFeatureMat.at<float>(num +PosSamNO, i) = descriptors[i];
sampleLabelMat.at<int>(num +PosSamNO, 0) = 1;
}
finAug.close();
}
//loading original negative examples...
for(int num = 0; num < NegSamNO && getline(finNeg,ImgName); num++)
{
cout<<"Now processing original negative image: "<"DATA/INRIAPerson/Neg/" + ImgName;
Mat src = imread(ImgName);
vector<float> descriptors;
hog.compute(src,descriptors,Size(8,8));
for(int i=0; ifloat>(num+PosSamNO,i) = descriptors[i];
sampleLabelMat.at<int>(num +PosSamNO +AugPosSamNO, 0) = -1;
}
finNeg.close();
//loading hard examples...
if(HardExampleNO > 0)
{
ifstream finHardExample("DATA/INRIAPersonHardNegList.txt");
if (!finHardExample)
{
cout << "HardExample list reading failed..." << endl;
return 1;
}
for(int num=0; num < HardExampleNO && getline(finHardExample, ImgName); num++)
{
cout<<"Now processing hard negative image: "<"DATA/INRIAPerson/HardNeg/" + ImgName;
Mat src = imread(ImgName);
vector<float> descriptors;
hog.compute(src,descriptors,Size(8,8));
for(int i=0; ifloat>(num+PosSamNO+NegSamNO,i) = descriptors[i];
sampleLabelMat.at<int>(num +PosSamNO +AugPosSamNO +NegSamNO, 0) = -1;
}
finHardExample.close();
}
svm ->setType(SVM::C_SVC);
svm ->setC(0.01);
svm ->setKernel(SVM::LINEAR);
svm ->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 3000, 1e-6));
cout<<"Starting training..."<train(sampleFeatureMat, ROW_SAMPLE, sampleLabelMat);
cout<<"Finishing training..."<save("SVM_HOG.xml");
}
else {
svm = SVM::load("SVM_HOG.xml"); //或者svm = Statmodel::load("SVM_HOG.xml"); static function
// svm->load("SVM_HOG.xml"); 这样使用不行
}
Mat svecsmat = svm ->getSupportVectors();//svecsmat元素的数据类型为float
int svdim = svm ->getVarCount();//特征向量位数
int numofsv = svecsmat.rows;
Mat alphamat = Mat::zeros(numofsv, svdim, CV_32F);//alphamat和svindex必须初始化,否则getDecisionFunction()函数会报错
Mat svindex = Mat::zeros(1, numofsv,CV_64F);
Mat Result;
double rho = svm ->getDecisionFunction(0, alphamat, svindex);
alphamat.convertTo(alphamat, CV_32F);//将alphamat元素的数据类型重新转成CV_32F
Result = -1 * alphamat * svecsmat;//float
vector<float> vec;
for (int i = 0; i < svdim; ++i)
{
vec.push_back(Result.at<float>(0, i));
}
vec.push_back(rho);
//saving HOGDetectorForOpenCV.txt
ofstream fout("HOGDetectorForOpenCV.txt");
for (int i = 0; i < vec.size(); ++i)
{
fout << vec[i] << endl;
}
/*********************************Testing**************************************************/
HOGDescriptor hog_test;
hog_test.setSVMDetector(vec);
Mat src = imread("person_138.png");
vector found, found_filtered;
hog_test.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);
cout<<"found.size : "<//找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中
for(int i=0; i < found.size(); i++)
{
Rect r = found[i];
int j=0;
for(; j < found.size(); j++)
if(j != i && (r & found[j]) == r)
break;
if( j == found.size())
found_filtered.push_back(r);
}
//画矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要做一些调整
for(int i=0; i0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(src, r.tl(), r.br(), Scalar(0,255,0), 3);
}
imwrite("ImgProcessed.jpg",src);
namedWindow("src",0);
imshow("src",src);
waitKey();
return 0;
}