- opencv学习:图像旋转的两种方法,旋转后的图片进行模板匹配代码实现
夜清寒风
学习opencv机器学习人工智能计算机视觉
图像旋转在图像处理中,rotate和rot90是两种常见的图像旋转方法,它们在功能和使用上有一些区别。下面我将分别介绍这两种方法,并解释它们的主要区别rot90方法rot90方法是NumPy提供的一种数组旋转函数,它主要用于对二维数组(如图像)进行90度的旋转。这个方法比较简单,只支持90度的倍数旋转,不支持任意角度旋转。使用NumPy进行旋转使用NumPy的rot90函数对模板图像进行旋转操作。
- opencv 学习 1
木木ainiks
opencv计算机视觉python
opencv学习的第一天#coding:utf-8importcv2ascv#首先读图片src=cv.imread(“img/1.jpg”)#设置图片的名字cv.namedWindow(“1”,cv.WINDOW_AUTOSIZE)#显示图片第一个参数设置图片名,第二个参数图片的地址cv.imshow(“1”,src)cv.waitKey(0)#将图片写入固定位置cv.imwrite(“img/2
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 零基础Opencv学习(二)
随风逐流wrx
opencv学习人工智能
图像变换一、边缘检测1:边缘检测Cannycv::MatiamgeCan;cv::Canny(image,iamgeCan,3,9,3);cv::imshow("Canny",iamgeCan);///边缘检测高级用法Canny用法cv::Matdst,edge,gray;dst.create(image.size(),image.type());///图像转灰度图像cv::cvtColor(im
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- opencv学习(十一)之绘图函数
梧桐栖鸦
OpenCV基础opencv2/3基础教程opencv直线circleellipsefillpolyopencv绘图函数
opencv中提供了很多绘图函数,在进行图像处理,对感兴趣区域进行标定时,就需要利用这些绘图函数。现在集中做一个归纳介绍。1.PointPoint常用来指定一幅二维图像中的点。如Pointpt;pt.x=10;pt.y=8;或Pointpt=Point(10,8);其指向的是在图像中(10,8)位置的一个像素点。查找Point引用可以在”core.hpp”文件发现如下语句:typedefPoint
- OpenCV学习路线图
superdont
计算机视觉opencv学习人工智能
下面是针对初学者设计的一个学习路线图:第1周:计算机视觉和OpenCV概述介绍计算机视觉及其应用领域讨论OpenCV的历史、特点和工作原理OpenCV的安装和配置(Windows/Linux/macOS)了解OpenCV的基本数据结构(cv::Mat等)第2周:OpenCV基础图像的基本操作(读取、显示、保存图片)图像的属性(色彩空间、像素访问与修改)图像的几何变换(缩放、旋转、剪切)第3周:图像
- 【Opencv学习】04-图像加法
R三哥哥啊
opencvopencv学习人工智能
文章目录前言一、图像加法混合1.1代码1.2运行结果二、图像的按位运算-组合相加2.1代码2.2运行结果示例:PPT平滑切换运行结果总结前言简单说就是介绍了两张图如何组合在一起。1、混合,透明度和颜色会发生改变2、组合,叠加起来。可以改变大小。3、两张图片如何平滑切换4、学会如何裁剪图片5、明白掩码操作6、如何将图片置于左侧右侧一、图像加法混合OpenCV中的加法与Numpy的加法是有所不同的。O
- OpenCV学习笔记:如何扫描图像、利用查找表和计时
weixin_33772645
人工智能c/c++测试
目的我们将探索以下问题的答案:如何遍历图像中的每一个像素?OpenCV的矩阵值是如何存储的?如何测试我们所实现算法的性能?查找表是什么?为什么要用它?测试用例这里我们测试的,是一种简单的颜色缩减方法。如果矩阵元素存储的是单通道像素,使用C或C++的无符号字符类型,那么像素可有256个不同值。但若是三通道图像,这种存储格式的颜色数就太多了(确切地说,有一千六百多万种)。用如此之多的颜色可能会对我们的
- OpenCV学习记录——形态学处理
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、腐蚀和膨胀二、高级形态学运算三、具体应用代码前言形态学是图像处理中最常用的技术之一,它主要用于从图像中提取有意义的形状信息,例如边界和连通区域,以便后续的识别工作能够捕捉到目标对象最重要的形状特征。此外,细化、像素化和修剪毛刺等技术也常用于图像的预处理和后处理,以增强图像质量。形态学转换主要有腐蚀和膨胀、开运算和闭运算、顶帽和底帽一、腐蚀和膨胀腐蚀和膨胀是两种最基本、最重要的形态学
- opencv学习记录——(15)模板匹配
蜡笔小新qqq
opencv学习计算机视觉
一、单模板匹配#include"opencv2/opencv.hpp"#includeusingnamespacestd;usingnamespacecv;voidmain(){///单模板匹配Mattemp=imread("temp.png");//模板图像Matsrc=imread("src.png");//待搜索图像即原图imshow("temp",temp);imshow("src",sr
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- OpenCV学习笔记(Python)—— 批量提取图像轮廓并保存结果到保持原始结构的输出目录
六个核桃Lu
OpenCV学习opencv人工智能python图像处理计算机视觉
批量处理图像,对每个图像提取轮廓内的区域并将轮廓外的区域设置为白色背景,然后保存处理后的图像到指定的输出目录,同时保持与输入目录相同的文件和目录结构。importcv2importnumpyasnpimportosfromtqdmimporttqdmdefprocess_image(input_path,output_path):#读取图像img=cv2.imread(input_path)ifi
- OpenCV学习记录——图像的绘制
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、绘制直线二、绘制矩形三、绘制圆形四、绘制文本前言我们在进行图像处理的过程中,通常需要进行划线、画矩形框锁定目标等操作来凸显指定目标,OpenCV提供了方便的绘图功能,可以进行直线、矩形、圆、文本文字等内容的绘制,这篇文章将记录OpenCV中图像的绘制相关内容。一、绘制直线绘制直线的函数如下:cv2.line(image,pt1,pt2,color,thickness)其中,五个参数
- OpenCV学习记录——阈值处理(全局阈值处理、自适应阈值处理)
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录一、学习目的二、图像二值化三、全局阈值处理四、自适应阈值处理一、学习目的在进行图像处理时,我们通常要进行颜色识别等一系列需要进行图像阈值处理的操作,今天我们就记录一下opencv进行阈值处理的一些基本操作和代码二、图像二值化我们首先要明白一个概念,图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0(表示黑色)和255(表示白色),可以将整个图像呈现出明显的黑白效果。最常用的方法就
- OpenCV学习记录——平滑处理
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、图像噪声二、图像平滑处理三、完整应用代码前言当我们用树莓派进行opencv图像处理时,摄像头所获取的图像质量通常会有所下降,此时,需要多种手段来优化图像的质量,提高图像识别的准度。今天所记录的是当图片经过传输等过程后出现的图像噪声现象及对应解决方法——平滑一、图像噪声在数字图像的采集、处理和传输过程中,可能会受到各种噪声的干扰,这会导致图像质量下降、图像变得模糊,甚至使图像的特征难
- OpenCV学习记录——边缘检测
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、边缘检测原理二、Canny边缘检测算法三、具体应用代码前言在做某些图像处理时,通常需要将识别到的物体边界提取出来,从而帮助我们实现目标检测,这就需要用到边缘检测,例如人脸识别和运动目标的检测都需要先进行边缘检测,这篇文章就记录一下边缘检测的原理及应用代码。一、边缘检测原理边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点,图像边缘检测大幅度地减少了
- opencv学习 机器学习
小猴啊0.0
opencv学习机器学习
Kmeansdoublecv::kmeans(InputArraydataintkInputOutputArraybestLabels//输出的所有样本的标签数组TermCriteriacriteriaintattempts//采样不同初始化标签的尝试次数intflag//中心点初始化方法,支持KMEANS_RANDOM_CENTERS//KMEANS_PP_CENTERS//KMEANS_USE
- opencv学习二值分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》二值分析:常见的二值化方法:基于全局阈值(threshold)得到的二值图像;基于自适应阈值(adaptiveThreshold)得到的二值图像;边缘检测(Canny)基于像素值范围(inRange)thresholdthresholdType介绍:THRESH_BINARY表示大于thresh的取maxval,否则取0;THRESH_BI
- 【Opencv学习】03-读取图片信息
R三哥哥啊
opencvopencv学习人工智能
前言几乎所有这些操作与Numpy的关系都比与OpenCV的关系更加紧密,因此熟练Numpy可以帮助我们写出性能更好的代码。Numpy是经过优化了的进行快速矩阵运算的软件包。所以我们不推荐逐个获取像素值并修改,这样会很慢,能有矩阵运算就不要用循环。读取像素点在计算机视觉和图像处理中,图像是由像素点组成的。每个像素点包含了颜色(在彩色图像中)和亮度(在灰度图像中)的信息。通过读取和操作这些像素点,我们
- 【Opencv学习】01-对图像进行简单的操作
R三哥哥啊
opencv学习python
首先了解一下什么是init.pyi文件文件init.pyi文件是Python中的类型提示文件,用于提供对特定包或模块的类型信息。它是类型提示的一种形式,用于描述包、模块、类、函数和变量的静态类型。在Python中,类型提示的目的是为了提供代码编辑器和静态类型检查工具更好的代码补全、类型检查和类型推断功能。init.pyi文件被放置在包或模块的目录中,并且可以包含该包或模块定义的类、函数、方法和变量
- 【Python_Opencv图像处理框架】信用卡数字识别项目
畅游星辰大海
#Python_Opencvopencvpython图像处理
写在前面本篇文章是opencv学习的第六篇文章,前面主要讲解了对图像的一些基本操作,这篇文章我们就开始大展身手,将前面所学的基础操作活学活用。既能复习基础操作,又能学到一些新的知识。作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正写在中间(1)简单介绍我们通过opencv提供的一些函数,来实现基础操作,看完本篇文章,你就能轻松地将这信用卡上的数字识别出来该技术首先通过图像处理技术
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- opencv学习形态学分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》膨胀操作与腐蚀操作膨胀操作一定程度上会把相邻的对象连接起来成为一个对象;腐蚀操作会让对象面积变小或者擦除小的对象。//膨胀操作voidcv::dilate(InputArraysrcOutputArraydstInputArraykernelPointanchor=Point(-1,-1)intiterations=1intborderTy
- OpenCV学习笔记2——视频的读取与处理
风痕天际
opencv学习笔记opencv学习笔记计算机视觉音视频
目录一、视频内容读取二、将视频中的每一帧转换为灰度图三、退出程序一、视频内容读取cv2中的“VideoCapture”函数可以捕获摄像头,用数字来控制不同的设备,如果是视频文件则直接指定路径。importcv2vc=cv2.VideoCapture('1.mp4')whileTrue:ret,frame=vc.read()ifframeisNone:breakifret==True:gray=cv
- OpenCV学习笔记4——边界填充
风痕天际
opencv学习笔记opencv学习笔记
边界填充,即将图片扩大一圈。代码如下:importcv2frommatplotlibimportpyplotaspltimg=cv2.imread('3.jpg')top_size,bottom_size,left_size,right_size=(50,50,50,50)replicate=cv2.copyMakeBorder(img,top_size,bottom_size,left_size
- OpenCV学习笔记1——图像读取与信息提取
风痕天际
opencv学习笔记opencvpython计算机视觉
目录一、计算机眼中的图像二、通过代码对图像进行操作1.图像的读取2.图像的显示三、将图像读取为灰度图像四、保存图像一、计算机眼中的图像在计算机中,图像被视为一个高度×宽度的像素矩阵,每一个矩阵内存放着该像素的色彩信息。计算机中大多采用RGB颜色标准,即通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色。部分颜色对应RGB值:白色:rgb(255,255,
- opencv学习-几种角点检测方法
wyw0000
opencvopencv学习计算机视觉
角点基本概念角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。角点检测(CornerDetection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等,也可称为特征点检测。目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现。对于角点检测算法的重要评价标准
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓