- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 深度学习路线,包括书籍和视频
jjm2002
深度学习深度学习人工智能
深度学习是一个广泛而快速发展的领域,涉及多种技术和应用。以下是一个深度学习学习路线,包括书籍和视频资源。入门阶段:理解基础知识:书籍:《深度学习》(DeepLearning)IanGoodfellow,YoshuaBengio和AaronCourville著。这是深度学习领域的权威书籍,适合初学者。书籍:《神经网络与深度学习》(NeuralNetworksandDeepLearning)Micha
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- 小白初探|神经网络与深度学习
神奇的代码在哪里
人工智能深度学习神经网络人工智能外接显卡
一、学习背景由于工作的原因,需要开展人工智能相关的研究,虽然不用参与实际研发,但在项目实施过程中发现,人工智能的项目和普通程序开发项目不一样,门槛比较高,没有相关基础没法搞清楚人力、财力如何投入,很难合理管控成本以及时间。为搞清楚情况,老年博主决定一步一个脚印,好好自学。在写本文时,博主已学到一定阶段了,趁有时间,通过博文记录下来,以免遗忘。二、学习准备常年的学习告诉我们,一门学科要快速入门,主流
- 神经网络与深度学习Pytorch版 Softmax回归 笔记
砍树+c+v
深度学习神经网络pytorch人工智能python回归笔记
Softmax回归目录Softmax回归1.独热编码2.Softmax回归的网络架构是一个单层的全连接神经网络。3.Softmax回归模型概述及其在多分类问题中的应用4.Softmax运算在多分类问题中的应用及其数学原理5.小批量样本分类的矢量计算表达式6.交叉熵损失函数7.模型预测及评价8.小结Softmax回归,也称为多类逻辑回归,是一种用于解决多分类问题的机器学习算法。它与普通的logist
- 【吴恩达-神经网络与深度学习】第3周:浅层神经网络
倏然希然_
深度学习与神经网络神经网络深度学习人工智能
目录神经网络概览神经网络表示含有一个隐藏层的神经网络(双层神经网络)计算神经网络的输出多样本的向量化向量化实现的解释激活函数(Activationfunctions)一些选择激活函数的经验法则:为什么需要非线性激活函数?激活函数的导数神经网络的梯度下降法(选修)直观理解反向传播随机初始化神经网络概览右上角方括号[]里面的数字表示神经网络的层数可以把许多sigmoid单元堆叠起来形成一个神经网络:第
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
鸭鸭渗透
人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- Pytorch 实现强化学习策略梯度Reinforce算法
爱喝咖啡的加菲猫
强化学习强化学习神经网络pytorch
一、公式推导这里参考邱锡鹏大佬的《神经网络与深度学习》第三章进阶模型部分,链接《神经网络与深度学习》。`伪代码:二、核心代码defmain():env=gym.make('CartPole-v0')obs_n=env.observation_space.shape[0]act_n=env.action_space.nlogger.info('obs_n{},act_n{}'.format(obs_
- 基于图神经网络与深度学习的商品推荐算法
谦谦菜鸟
深度学习机器学习人工智能
传统做法现阶段局限创新方法结果相关工作目前推荐算法基于矩阵分解的推荐算法基于深度学习的推荐算法基于图神经网络的推荐算法创新点模型设计本文的核心任务是训练出一个模型LGDL模型框架嵌入层ID特征嵌入评论文本特征嵌入前向传播层关联关系提取偏好特征提取评分预测层模型优化传统做法利用深度学习方法从用户ID、评论文本等数据中提取其中所隐藏的用户物品特征,根据该特征预测用户对新物品的打分从而给出推荐是传统推荐
- 神经网络与深度学习(五)——人工神经网络和卷积神经网络
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】简要介绍NN与CNN【嵌牛鼻子】深度学习神经网络【嵌牛提问】NN与CNN的区别有哪些人工神经网络简称神经网络(NN),是目前各种神经网络的基础,其构造是仿造生物神经网络,将神经元看成一个逻辑单元,其功能是用于对函数进行估计和近似,是一种自适应系统,通俗的讲就是具备学习能力。其作用,目前为止就了解到分类。其目的就是在圈和叉之间画出
- 学习笔记--神经网络与深度学习之卷积神经网络
qssssss79
深度学习神经网络深度学习学习
目录1.卷积1.1一维卷积1.2卷积的作用1.3卷积扩展1.4二维卷积1.5互相关2.卷积神经网络2.1用卷积代替全连接2.2卷积层2.3汇聚层(池化层)2.4卷积网络结构3.其它卷积种类3.1空洞卷积3.2转置卷积/微步卷积4典型的卷积神经网络4.1LeNet-54.2AlexNet4.3Inception4.4残差网络利用全连接前馈网络处理图像时的问题:(1)参数太多: 对于输入的10010
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- [23-24 秋学期] NNDL-作业2 HBU
洛杉矶县牛肉板面
深度学习人工智能机器学习深度学习
前言:本文解决《神经网络与深度学习》-邱锡鹏第二章课后题。对于习题2-1,平方损失函数在机器学习课程中学习过,但是惭愧的讲,在完成这篇博客前我对均方误差和平方损失函数的概念还有些混淆。交叉熵损失函数我未曾了解过,只在决策树一节中学习过关于熵entropy的基本概念。借此机会弄清原理,并且尝试着学会应用它。对于习题2-12,考察对混淆矩阵的理解程度和计算。其中宏平均和微平均是我未曾学习过的概念,借此
- 【22-23 春学期】AI作业5-深度学习基础
HBU_David
AI深度学习人工智能python
人工智能、机器学习、深度学习之间的关系神经网络与深度学习的关系“深度学习”和“传统浅层学习”的区别和联系神经元、人工神经元MP模型单层感知机SLP异或问题XOR多层感知机MLP前馈神经网络FNN激活函数ActivationFunction为什么要使用激活函数?常用激活函数有哪些?均方误差和交叉熵损失函数,哪个适合于分类?哪个适合于回归?为什么?
- 神经网络与深度学习day01-基础知识
小鬼缠身、
深度学习神经网络人工智能python
今天开始新学期,然后就是每周要在这里发这周的实验报告,CSDN对不起了,你可能不情愿,但是必须要稍微容纳一下我(这个菜比)在这里吹了。第一周的基础知识训练:1、导入numpy库importnumpy2、建立一个一维数组a=[4,5,6]。输出:(1)a的类型;(2)a的各维度的大小;(3)a的第一个元素a=[4,5,6]print(type(a))print(numpy.shape(a))prin
- HBU_神经网络与深度学习 实验10 卷积神经网络:基于ResNet18网络完成图像分类任务
ZodiAc7
cnn深度学习python
目录写在前面的一些内容一、实践:基于ResNet18网络完成图像分类任务1.数据处理(1)数据集介绍(2)数据读取(3)构造Dataset类2.模型构建3.模型训练4.模型评价5.模型预测二、实验Q&A写在前面的一些内容本文为HBU_神经网络与深度学习实验(2022年秋)实验10的实验报告,此文的基本内容参照[1]Github/卷积神经网络-下.ipynb,检索时请按对应序号进行检索。本实验编程语
- Python练习题:猜数字游戏
BioVS
python开发语言
#题目来源于MOOC课程《神经网络与深度学习》,程序为自己独立编写题目:随机产生一个1-10之间的整数,并提示用户输入1-10的整数进行猜测,判断是否猜中。每次猜完后,提示“太大了”或者“太小了”,猜对之后提示“恭喜你,猜对了!”,并退出程序。当用户才出数字后,询问是否想要继续下一轮游戏,并记录显示用户已参加轮次。对应python程序:importrandomtimes=1#存放第几轮游戏,用于后
- 2023年度盘点:AIGC、AGI、GhatGPT、人工智能大模型必读书单
家有娇妻张兔兔
粉丝送书活动AIGCagi人工智能福利送书
2023年度盘点智能大模型必读书单概述好书推荐01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》写在末尾:主页传送门:传送送书系列:送书第一期:考研必备书单送书第二期:CTF那些事儿送书第三期:数据要素安全流通送书第四期:MLOps工程实践:工具、技术与企业级应用送书第五期:Python数据挖掘:入门进阶与实用案
- 搜索与人工智能
码海串游
人工智能
前言第一:通过博弈树搜索和启发式搜索的例子了解基于搜索的通用问题求解方法第二:了解人工智能发展的历程和社会影响第三:了解机器学习的基本思想和典型应用第四:了解人工智能应用开发的基本模式内容1.博弈树与剪纸、零和博弈,极大极小策略博弈树与搜索,α与β剪枝以及著名的计算机博弈的例子2.启发式搜索启发式函数,启发式搜索过程,3.人工智能与机器学习人工智能发展历程,专家系统,机器学习,神经网络与深度学习。
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
herosunly
优质书籍推荐人工智能AIGCagi
文章目录0.前言1.《ChatGPT驱动软件开发》2.《ChatGPT原理与实战》3.《神经网络与深度学习》4.《AIGC重塑教育》5.《通用人工智能》0.前言 2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成百、上千亿的
- DL Homework 11
熬夜患者
DLHomework人工智能深度学习
目录1.被优化函数编辑(代码来源于邱锡鹏老师的神经网络与深度学习的实验)L1.pyop.py(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam2.被优化函数编辑3.解释不同轨迹的形成原因,并分析各个算法的优缺点(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam总结在展开本次作业之前,
- 2020-12-07 吴恩达-神经网络与深度学习-第三周编程练习
Vivivivi安
Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-third-week-excercise.git
- 2020-12-03 吴恩达-神经网络与深度学习-第二周编程练习
Vivivivi安
最近听吴恩达老师的课,写课后作业Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-second-week-excercise
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
雪碧有白泡泡
粉丝福利活动人工智能AIGCagi
前言「作者主页」:雪碧有白泡泡「个人网站」:雪碧的个人网站2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。文章目录前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》《AIGC重塑教育》05《通用人工智能》LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LL
- 年度大盘点:AIGC、AGI、GhatGPT震撼登场!揭秘人工智能大模型的奥秘与必读书单
洁洁!
externalAIGCagi人工智能
这里写目录标题前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》前言在2023年,人工智能领域经历了一场前所未有的大爆发,特别是在语言模型领域。新的概念和英文缩写如AIGC、AGI、GhatGPT等频繁出现,给人们带来了极大的困惑和好奇。这些突如其来的名词和缩写不仅让人摸不着头脑,还引发了对人工智能发展的种种
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
库库的里昂
杂谈人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- 循环神经网络-RNN记忆能力实验 [HBU]
洛杉矶县牛肉板面
深度学习rnn深度学习人工智能
目录一、循环神经网络二、循环神经网络的记忆能力实验三、数据集构建数据集的构建函数加载数据并进行数据划分构造Dataset类四、模型构建嵌入层SRN层五、模型训练训练指定长度的数字预测模型多组训练损失曲线展示六、模型评价参考《神经网络与深度学习》中的公式(6.50),改进SRN的循环单元,加入隐状态之间的残差连接,并重复数字求和实验。观察是否可以缓解长程依赖问题?总结参考原文章:aistudio.b
- [23-24 秋学期]NNDL 作业6 卷积 [HBU]
洛杉矶县牛肉板面
深度学习深度学习人工智能卷积神经网络
目录一、概念二、探究不同卷积核的作用后接:关于使用pycharm输出卷积图像后图片仍然不清晰的可能原因以及解决方法总结:前言:卷积常用于特征提取实验过程中注意认真体会“特征提取”,弄清楚为什么卷积能够提取特征。一、概念用自己的语言描述“卷积、卷积核、特征图、特征选择、步长、填充、感受野”。大致看了一遍邱锡鹏《神经网络与深度学习》的卷积一节。谈谈我对这些名词概念的理解(理解不足描述不准请见谅)。个人
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement