- 深入TA-Lib:量化技术指标详解
深入TA-Lib:量化技术指标详解本文系统讲解TA-Lib技术指标分析,涵盖基础、数据处理、趋势与动量指标、均量线、布林线等,并结合Python代码与大数据、机器学习实战案例,助力读者掌握量化交易实战技巧。本文系统梳理了TA-Lib技术指标分析的核心内容,包括TA-Lib基础、数据处理、趋势与动量指标、均量线、布林线等关键技术指标分析方法,并结合Python代码示例与大数据、机器学习的融合实战案例
- 板凳-------Mysql cookbook学习 (十一--------4)
唐宇迪机器学习实战课程笔记https://blog.csdn.net/weixin_54338498/article/details/128818007?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ECtr-1-12881
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- Python机器学习实战:推荐系统的原理与实现方法
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:推荐系统的原理与实现方法1.背景介绍1.1问题的由来在当今数字化时代,推荐系统已成为电子商务、媒体流媒体平台、社交媒体以及在线购物网站的核心组件之一。推荐系统旨在根据用户的历史行为、偏好以及社会关系等因素,为用户提供个性化的内容或商品建议,从而提高用户体验、增加用户粘性,并提升业务转化率。1.2研究现状随着大数据和深度学习技术的快速发展,推荐系统正从基于规则的简单过滤模型
- 机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
微学AI
机器学习实战项目机器学习数学建模人工智能
大家好,我是微学AI,今天给大家介绍一下机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现。文章目录一、项目介绍二、项目背景三、数学原理与算法分析动态规划模型遗传算法设计编码方案适应度函数约束处理算法参数能量消耗模型一泵房能耗二泵房能耗效率计算模型四、系统特性与创新点代码实现基于python实现完整代码五、应用价值与扩展方向六、结论一、项目介绍本项目是一个基于动态规划和遗传算法的水泵调
- 机器学习实战---书中谬误讨论
奔跑的石头_
机器学习机器学习numpy
关注公众号“码字读书会”,了解最新消息。5.2.3节首先要把5.2.2节内容做了,不然得不到回归系数weights值。即dataArr,labelMat=logRegres.loadDataSet()logRegres.gradAscent(dataArr,labelMat)reload(logRegres)logRegres.plotBestFit(weights.getA())此处画图做拟合曲
- Python机器学习实战:使用Pandas进行数据预处理与分析
AI天才研究院
AIAgent应用开发计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:使用Pandas进行数据预处理与分析1.背景介绍在机器学习和数据科学领域中,数据预处理是一个至关重要的步骤。原始数据通常存在噪声、缺失值、异常值等问题,直接将其输入机器学习模型会导致模型性能下降。因此,对数据进行清洗、转换和规范化等预处理操作是必不可少的。Pandas是Python中广泛使用的数据分析库,提供了高性能、易于使用的数据结构和数据分析工具。它可以高效地处理结构
- Python机器学习实战:智能聊天机器人的构建与优化
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:智能聊天机器人的构建与优化作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能与聊天机器人的发展历程1.1.1人工智能的起源与发展人工智能(ArtificialIntelligence,AI)的起源可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。随后,人工智能经历了几次高潮和低谷,期间涌现出许多重要的理论和算法,例如符号主义、连接主义、专家系统
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- python3源代码_机器学习实战源代码python3
weixin_39955781
python3源代码
机器学习实战源代码python3\machinelearninginaction\.git\COMMIT_EDITMSG机器学习实战源代码python3\machinelearninginaction\.git\config机器学习实战源代码python3\machinelearninginaction\.git\description机器学习实战源代码python3\machinelearnin
- Python机器学习实战:分布式机器学习框架Dask的入门与实战
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:分布式机器学习框架Dask的入门与实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,数据量的爆炸式增长使得传统的单机处理方式逐渐显得力不从心。无论是数据预处理、特征工程还是模型训练,单机环境下的计算资源和内存限制都成为了瓶颈。为了应对这些挑战,分布式计算框架应运而生。Das
- 【机器学习实战】监督学习:使用 Scikit-learn 库训练一个房价预测模型
phenix_01
机器学习学习scikit-learn
一、引言在机器学习领域,监督学习是一种通过已有标注数据训练模型,从而对新数据进行预测的重要方法。房价预测作为回归问题的典型应用,在房地产分析、投资决策等场景中具有重要价值。本文将基于Scikit-learn库,完整演示从数据准备到模型评估的全流程,带领读者掌握房价预测模型的构建方法。二、数据准备:从Kaggle获取数据集本文使用Kaggle上的经典波士顿房价数据集(BostonHousingDat
- 机器学习实战02:学生成绩预测与可视化分析
梦弦18
机器学习信息可视化
目录一、项目背景二、数据读取与初步处理三、数据可视化分析(一)相关性矩阵热图(二)父母教育水平与成绩关系(三)种族与成绩关系(四)测试准备课程与成绩关系(五)其他分析四、机器学习模型构建与评估(一)数据预处理(二)模型训练与评估五、总结六、全代码七.数据集callme在教育领域,了解影响学生成绩的因素并对成绩进行预测,对提升教学质量、制定个性化学习方案具有重要意义。本文将通过一个机器学习实战项目,
- Python机器学习实战:掌握NumPy的高效数据操作
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
NumPy,Python,机器学习,数据操作,数组,向量,矩阵,线性代数,科学计算1.背景介绍在机器学习领域,数据是至关重要的资源。高效、准确地处理和操作数据是机器学习模型训练和应用的基础。NumPy(NumericalPython)作为Python生态系统中强大的数值计算库,为机器学习提供了高效的数据结构和操作工具。NumPy的核心是ndarray(n-dimensionalarray)数据结构
- 机器学习实战步骤与案例
enyp80
机器学习
机器学习实战需要结合理论和实践,以下是一个清晰的实战步骤指南,涵盖关键工具、常见任务示例以及避坑建议,帮助你快速上手:一、机器学习实战核心步骤明确问题与数据准备任务类型:分类、回归、聚类、强化学习?数据来源:Kaggle、UCI、公开API、爬虫或业务数据库。数据格式:结构化数据(CSV/SQL)或非结构化数据(图片/文本)。工具推荐:数据清洗:Pandas、NumPy可视化:Matplotlib
- 机器学习实战:6种数据集划分方法详解与代码实现
慕婉0307
机器学习机器学习人工智能深度学习数据集划分
在机器学习项目中,合理划分数据集是模型开发的关键第一步。本文将全面介绍6种常见数据格式的划分方法,并附完整Python代码示例,帮助初学者掌握这一核心技能。一、数据集划分基础函数1.核心函数:train_test_splitfromsklearn.model_selectionimporttrain_test_split#基本用法X_train,X_test,y_train,y_test=trai
- 机器学习实战:鸢尾花分类
学术乙方
Python机器学习分类人工智能
项目目标使用经典的鸢尾花数据集(IrisDataset),通过支持向量机(SVM)算法训练一个分类模型,能够根据花瓣和萼片的测量数据预测鸢尾花的种类。环境准备Python#需要安装的库(在终端运行)pipinstallnumpypandasmatplotlibscikit-learn完整代码实现#1.导入必要的库importnumpyasnpimportpandasaspdfromsklearni
- 机器学习实战:以鸢尾花数据集分类问题为例
Tech Synapse
机器学习分类人工智能SVMscikit-learn鸢尾花数据集
在当今数据驱动的时代,机器学习已成为解决复杂问题的重要工具。本文将通过一个具体的分类问题——鸢尾花数据集(IrisDataset)的分类,展示如何在实际项目中应用机器学习。我们将使用Python编程语言,并借助流行的机器学习库scikit-learn来实现这一目标。文章将详细介绍数据预处理、模型选择、训练、评估以及预测等步骤,并提供完整且可直接运行的代码示例。一、项目背景与数据集介绍鸢尾花数据集是
- 从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南
灏瀚星空
python机器学习开发语言学习人工智能算法金融
从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南引言在算法交易席卷全球金融市场的今天,搭建一套高可用的量化工具链已成为开发者掘金Alpha的核心竞争力。然而,面对庞杂的技术组件——从海量数据的清洗对齐、策略逻辑的回测验证,到机器学习模型的实盘部署——许多开发者陷入困境:Pandas处理Tick数据内存爆炸怎么办?回测曲线完美但实盘表现惨淡如何归因?深度学习模型预测准确却无法
- 机器学习实战:PyTorch 与 Sklearn 线性回归模型大对决
#guiyin11
机器学习pytorchsklearn
一、引言在机器学习领域,模型的构建和训练依赖于各种工具和框架。PyTorch和Sklearn作为其中的佼佼者,在实现线性回归模型时各有千秋。深入了解它们的差异和优势,对提升模型性能和开发效率意义重大。本文将全面剖析这两个框架在构建和训练线性回归模型方面的特点。二、实验原理(一)线性回归基本原理线性回归旨在寻找输入特征X与输出标签y的线性关系,通过公式y=Xθ+ϵ来描述。其中,θ是待估参数,ϵ为随机
- Python机器学习实战:机器学习在金融风险评估中的应用
AI天才研究院
AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:机器学习在金融风险评估中的应用1.背景介绍金融风险评估是金融行业中至关重要的一环。随着数据量的爆炸性增长和计算能力的提升,机器学习在金融风险评估中的应用变得越来越普遍。通过机器学习算法,我们可以更准确地预测违约风险、市场风险和操作风险,从而帮助金融机构做出更明智的决策。2.核心概念与联系2.1机器学习概述机器学习是一种通过数据训练模型,使其能够自动改进和预测的技术。它主要
- 【机器学习】解锁智能奥秘:从理论到实战的奇幻之旅
Guiat
科学技术变革创新机器学习人工智能开源数据化
个人主页:GUIQU.归属专栏:科学技术变革创新文章目录1.机器学习:开启智能新时代2.机器学习的基础概念大揭秘2.1定义与内涵2.2与人工智能、深度学习的关系图谱2.3关键术语全解析3.机器学习三要素:模型、策略与算法的深度剖析3.1模型:问题解决的基石3.2策略:模型优劣的裁判3.3算法:模型优化的引擎4.机器学习实战:从数据到模型的蜕变之旅4.1数据准备:机器学习的燃料4.2模型搭建:智能大
- 政安晨:【Keras机器学习示例演绎】(十四)—— 用于弱光图像增强的零 DCE
政安晨
机器学习keras人工智能tensorflow深度学习神经网络弱光图像增强
目录简介下载LOL数据集创建TensorFlow数据集零DCE框架了解光线增强曲线DCE-Net损失函数色彩恒定损失曝光损失光照平滑度损失空间一致性损失深度曲线估计模型训练推论测试图像推理政安晨的个人主页:政安晨欢迎点赞✍评论⭐收藏收录专栏:TensorFlow与Keras机器学习实战希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!本文目标:实施零参考深度曲线估算,实现低-高
- Python机器学习实战:随机森林算法 集成学习的力量
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:随机森林算法-集成学习的力量作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Python,机器学习,随机森林,集成学习,分类,回归,数据科学,机器学习算法1.背景介绍1.1问题的由来随着数据科学的快速发展,机器学习技术在各个领域都得到了广泛应用。在众多机器学习算法中,随机森林(RandomForest)因其强大的分类
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C