非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。今进行曲线拟合,求x使得输出的如下最小二乘表达式成立: min Σ(F(x,xdatai)-ydatai)^2 函数 lsqcurvefit 格式 x = lsqcurvefit(fun,x0,xdata,ydata) x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) [x,resnorm] = lsqcurvefit(…) [x,resnorm,residual] = lsqcurvefit(…) [x,resnorm,residual,exitflag] = lsqcurvefit(…) [x,resnorm,residual,exitflag,output] = lsqcurvefit(…) [x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…) [x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…) 参数说明: x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据; lb、ub为解向量的下界和上界lb≤x≤ub,若没有指定界,则lb=[ ],ub=[ ]; options为指定的优化参数; fun为待拟合函数,计算x处拟合函数值,其定义为 function F = myfun(x,xdata) resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和; residual=fun(x,xdata)-ydata,即在x处的残差; exitflag为终止迭代的条件; output为输出的优化信息; lambda为解x处的Lagrange乘子; jacobian为解x处拟合函数fun的jacobian矩阵。 例 求解如下最小二乘非线性拟合问题 已知输入向量xdata和输出向量ydata,且长度都是n,待拟合函数的表达式为 ydata(i)=x(1)-xdata(i)^2+x(2)-sin(xdata(i))+x(3)-xdata^3 即目标函数为min Σ(F(x,xdata(i))-ydata(i))^2 其中:F(x,xdata) = x(1)*xdata^2 + x(2)*sin(xdata) + x(3)*xdata^3 初始解向量为x0=[0.3, 0.4, 0.1],即表达式的 个参数[x(1),x(2),x(3)]。 解:先建立拟合函数文件,并保存为myfun.m function F = myfun(x,xdata) F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3; 然后给出数据xdata和ydata >>xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4]; >>ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3]; >>x0 = [10, 10, 10]; %初始估计值 >>[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata) 结果为: Optimization terminated successfully: Relative function value changing by less than OPTIONS.TolFun x = 0.2269 0.3385 0.3021 =>即解出的系数最优估计值 resnorm = 6.2950 =>在x解值处的目标最小二乘表达式值。即所谓残差。