- 大数据Lambda架构
奋进学堂
系统架构设计师考试架构
Lambda架构介绍Lambda是用于同时处理离线和实时数据,可容错、可扩展的分布式系统架构。有批处理层、加速层、服务层。同时以流计算和批处理计算合并视图。Lambda架构的批处理层采用不可变存储模型,不断地往主数据集后追加新的数据。Lambda架构优缺点<
- Lambda架构
leveretz
大数据lambda
原文地址:https://www.cnblogs.com/xiaodf/p/11642555.html首先我们来看一个典型的互联网大数据平台的架构,如下图所示:在这张架构图中,大数据平台里面向用户的在线业务处理组件用褐色标示出来,这部分是属于互联网在线应用的部分,其他蓝色的部分属于大数据相关组件,使用开源大数据产品或者自己开发相关大数据组件。你可以看到,大数据平台由上到下,可分为三个部分:数据采集
- ES聚合分析原理与代码实例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
ES聚合分析原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业级应用需要处理的数据量呈爆炸式增长。如何从海量数据中快速、高效地提取有价值的信息,成为了数据分析和处理领域的重要课题。Elasticsearch(简称ES)作为一种高性能、可扩展的全文搜索引擎,在处理海量数据、进行高效数
- 大数据技术4:Lambda和Kappa架构区别_lambda架构和kappa架构区别
2401_84181501
大数据架构
Lambda架构缺点:虽然Lambda架构使用起来十分灵活,并且可以适用于很多的应用场景,但在实际应用的时候,Lambda架构也存在着一些不足,主要表现在它的维护很复杂。(1)同样的需求需要开发两套一样的代码:这是Lambda架构最大的问题,两套代码不仅仅意味着开发困难(同样的需求,一个在批处理引擎上实现,一个在流处理引擎上实现,还要分别构造数据测试保证两者结果一致),后期维护更加困难,比如需求变
- python操作HBase
王壮_
大数据Pythonhbase数据库大数据
1.安装happybase和thriftpipinstallhappybasepipinstallthrift2.启动hbase的thrift进程,并指定端口9090hbase-daemon.shstartthrift-p90903.操作HBaseimporthappybaseconnection=happybase.Connection(host='hadoop10',port=9090)tab
- HBase伪分布式安装配置流程
TheMountainGhost
hbase数据库大数据
要配置HBase的伪分布式模式,以下是详细的操作步骤,确保每一步都执行准确。1.准备工作确保已经安装并配置好了Hadoop(伪分布式),因为HBase依赖HDFS。Hadoop已经配置并能够正常运行。Java已经安装并配置好了环境变量。SSH配置免密登录(通常在Hadoop环境中已配置)。2.下载并解压HBase下载HBase安装包并解压到你想要的目录:tar-zxvfhbase-2.4.18-b
- Scala简介
醉游江湖
scala
hadoop生态圈—>javaspark生态圈—>scala1.scala是面向对象的、面向函数的基于静态类型的编程语言。静态语言(强类型语言)静态语言是在编译时变量的数据类型即可确定的语言,多数静态类型语言要求在使用变量之前必须声明数据类型。例如:C++、Java、Delphi、C#,Scala等。scala编译后是字节码文件可以调用java源有的库动态语言(弱类型语言)动态语言是在运行时确定数
- 【spark床头书系列】如何在YARN上启动Spark官网权威详解说明
BigDataMLApplication
sparkspark大数据分布式
【spark床头书系列】如何在YARN上启动Spark官网权威详解说明点击这里看全文文章目录添加其他JAR文件准备工作配置调试应用程序Spark属性重要说明KerberosYARN特定的Kerberos配置Kerberos故障排除配置外部Shuffle服务使用ApacheOozie启动应用程序使用Spark历史服务器替代SparkWebUI官网链接确保HADOOP_CONF_DIR或者YARN_C
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- Redis线上阻塞要如何排查
思静鱼
#Redis-缓存redis数据库缓存
一、指令阻塞其他指令因为Redis执行指令是单线程的,因为单次执行速度会非常快,但是如果你让单次执行变慢了,那么也会阻塞后续的指令执行。哪些情况会让指令变慢:1.指令获取的数据很多,比如大数据量下执行keys、hgetall、smembers等指令。我们可以通过查看Redis的慢查找到问题,不要去执行慢查操作2.大Key,我单次查询的的数据过大,也会导致单次执行变慢。所以我们需要拆分大key。ke
- 解决Python中libhdfs.so的共享库找不到的问题
code_welike
python开发语言Python
解决Python中libhdfs.so的共享库找不到的问题在Python开发过程中,有时会遇到导入共享库时出现"ImportError:Cannotfindthesharedlibrary:libhdfs.so"的错误。这个错误通常发生在使用Python访问Hadoop分布式文件系统(HadoopDistributedFileSystem,简称HDFS)时,由于缺少libhdfs.so共享库文件而
- Apache Hive 聚合函数与 OVER 窗口函数:从基础到高级应用
大鳥
sqlhiveapachehivehadoop
在大数据时代,ApacheHive是处理和分析海量数据的强大工具。Hive提供了丰富的聚合函数和强大的OVER窗口函数,能够帮助我们高效地进行数据分析。本文将综合介绍Hive的聚合函数和OVER窗口函数,结合实际使用场景和代码示例,帮助读者深入理解这些功能,尤其是它们在时间序列分析中的应用。一、Hive聚合函数基础聚合函数是Hive中用于对一组数据进行计算并返回单个值的函数。它们在数据分析中非常常
- 大数据治理实战指南:数据质量、合规与治理架构
一ge科研小菜鸡
大数据大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着企业数字化转型的加速,大数据已成为驱动业务决策的核心资产。然而,数据治理的缺失或不完善,可能导致数据质量问题、合规风险以及业务价值的流失。大数据治理的目标在于确保数据的可用性、完整性、安全性和合规性,支撑企业的智能化发展。本教程将系统讲解大数据治理的关键概念、技术方法,并提供实际应用案例,帮助企业构建高效的数据治理体系。1.大数据治理概述
- Redis学习笔记
csdn_bobo_6
redis学习数据库
认识NoSQLNoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数据应用难题。NoSQL特点方便扩展(
- 《Spark大数据分析与内存计算》——第三章
阿万古
课程作业spark数据分析大数据
第三章作业及答案快捷查找:Ctrl+F在搜索框中输入题目一.单选题(共17题)1.(单选题)并不是所有企业都能自己产生数据,从而用于决策辅助,而更多的互联网企业如电商等大部分是要靠什么来抓取互联网数据进行分析A.HadoopB.pythonC.SparkD.网路爬虫正确答案:D:网路爬虫;2.(单选题)什么负责即席查询的应用A.MLlibB.SparkStreamingC.GraphXD.Spar
- Hive数据仓库中的数据导出到MySQL的数据表不成功
sin2201
出错问题数据仓库hivemysql
可能的原因:(1)没有下载flume和sqoop(2)权限问题:因为MySQL数据库拒绝了root用户从hadoop3主机的连接请求,root用户没有从hadoop3主机进行连接的权限解决:通过MySQL的授权命令来授予权限mysql>GRANTALLPRIVILEGESONsqoop_weblog.*TO'root'@'hadoop3'IDENTIFIEDBY'2020';QueryOK,0ro
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- Lambda离线实时分治架构深度解析与实战
喜欢猪猪
架构
一、引言在大数据技术日新月异的今天,Lambda架构作为一种经典的数据处理模型,在应对大规模数据应用方面展现出了强大的能力。它整合了离线批处理和实时流处理,为需要同时处理批量和实时数据的应用场景提供了成熟的解决方案。本文将对Lambda架构的演变、核心组件、工作原理及痛点进行深度解析,并通过Java代码实现一个实战实例。二、Lambda架构的演变Lambda架构是由Storm的作者NathanMa
- “大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
绒绒毛毛雨
大数据挖掘数据挖掘mapreduce人工智能
文章目录O背景知识1数据挖掘2邦费罗尼原则3TF.IDF4哈希函数5分布式文件系统一、MapReduce基本介绍1.Map任务2.按键分组3.Reduce任务4.节点失效处理5.小测验:在一个大型语料库上有100个map任务和若干reduce任务:二、基于MapReduce的基本运算1.选择(Selection)2.交(Intersection)3.并(Union)4.补(Difference)5
- 基于大数据的电影数据分析可视化系统设计与应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于大数据的电影数据分析可视化系统设计与应用作者:禅与计算机程序设计艺术1.背景介绍1.1大数据时代的电影行业随着互联网技术和数字化的发展,电影行业已经进入大数据时代。每天都有海量的电影相关数据在各个平台上生成,包括票房数据、评分数据、影评数据等。这些数据蕴含着巨大的价值,如果能够有效地分析和利用,将为电影行业的发展提供重要的决策支持。1.2电影数据分析与可视化的意义1.2.1洞察电影市场趋势通过
- Command Center AI
由数入道
应急管理人工智能机器学习智能体
CommandCenterAI是一种先进的智能决策支持系统,专门用于应急指挥和资源调度管理,尤其在高压、复杂的环境中,如自然灾害应对、军事指挥、城市公共安全等领域,帮助决策者做出快速、有效的响应。它集成了大数据处理、实时情报分析、优化调度、决策模拟等功能,为指挥官提供多维度的决策支持。1.CommandCenterAI的核心功能1.1实时数据整合与情报分析CommandCenterAI需要从多个数
- 用 Docker 搭建 Spark 集群
yeasy
BigdataDockersparkDocker云计算集群分布式计算
简介Spark是Berkeley开发的分布式计算的框架,相对于Hadoop来说,Spark可以缓存中间结果到内存而提高某些需要迭代的计算场景的效率,目前收到广泛关注。熟悉Hadoop的同学也不必担心,Spark很多设计理念和用法都跟Hadoop保持一致和相似,并且在使用上完全兼容HDFS。但是Spark的安装并不容易,依赖包括Java、Scala、HDFS等。通过使用Docker,可以快速的在本地
- 【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向
努力学习的大大
学术会议推荐人工智能大数据深度学习神经网络
【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向文章目录【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向2025
- Github上最热门的11个Java开源项目你会了吗
Java小叮当
项目Github项目java程序员IT
前言4月份GitHub上最热门的Java开源项目排行已经出炉啦,一起来看看吧!1JimuReport(地址见文末)这是一款免费的数据可视化工具,报表与大屏设计!类似于excel操作风格,在线拖拽完成报表设计!功能涵盖:报表设计、图形报表、打印设计、大屏设计等,永久免费!2dolphinscheduler(地址见文末)ApacheDolphinScheduler是一个可视化的分布式大数据工作流任务调
- 2025年新出炉的MySQL面试题
长风清留扬
150道MySQL高频面试题mysql数据库面试sql
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- 精选了几道MySQL的大厂面试题,被提问的几率很高!
长风清留扬
150道MySQL高频面试题mysqlandroid数据库面试学习MySQL面试
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- 有史以来最全的异常类讲解没有之一!第二部分爆肝2万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第二部分
长风清留扬
最新Python入门基础合集python笔记学习异常处理改行学it异常BUG
本文是第二部分,第一部分请看:有史以来最全的异常类讲解没有之一!爆肝3万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第一部分博客主页:长风清留扬-CSDN博客系列专栏:Python基础专栏每天更新大数据相关方面的技术,分享自己的实战工作经验和学习总结,尽量帮助大家解决更多问题和学习更多新知识,欢迎评论区分享自己的看法感谢大家点赞收藏⭐评论异常类型IndexError
- 有史以来最全的异常类讲解没有之一!第三部分爆肝4万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第三部分
长风清留扬
最新Python入门基础合集python面试异常处理BUG异常类型职场和发展改行学it
本文是第三部分,第一第二部分请看:有史以来最全的异常类讲解没有之一!爆肝3万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第一部分有史以来最全的异常类讲解没有之一!第二部分爆肝2万字,终于把Python的异常类写完了!最全Python异常类合集和案例演示,第二部分博客主页:长风清留扬-CSDN博客系列专栏:Python基础专栏每天更新大数据相关方面的技术,分享自己的实
- 还在为Python“运算符”中遇到的BUG而发愁吗?,变量相关的问题和解决办法看这篇文章就够了!
长风清留扬
androidpythonbug运算符
博客主页:长风清留扬-CSDN博客系列专栏:Python疑难杂症百科-BUG编年史每天更新大数据相关方面的技术,分享自己的实战工作经验和学习总结,尽量帮助大家解决更多问题和学习更多新知识,欢迎评论区分享自己的看法感谢大家点赞收藏⭐评论关于运算符中常见的问题和解决方法在Python编程的浩瀚宇宙中,变量如同星辰般璀璨,它们承载着数据,驱动着程序的运行。然而,即便是这些看似简单的构建块,也时常隐藏着令
- 金融数据有哪些,有用的股票API接口数据
nance99
金融pythongit
一、金融数据有哪些,有用的股票API接口行情数据金融大数据是为金融机构、个人投资者以及金融应用开发者提供专业的数据和行情报价API服务,满足不同用户在投资过程中丰富多样的行情数据分析和投资研究,以API接口形式为用户提供行情数据API服务,提供的数据包括市场行情、财报、宏观等,还有基于文本分析的股票关联数据。对金融机构或者投资者而言,金融数据是企业财富。实时数据对企业成功至关重要,股票行情数据种类
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo