tensor flow 模型保存和回复,保存精度最高的模型,python 代码

将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,'ckpt/mnist.ckpt',global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, 'my-model', global_step=0) ==>      filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

看一个mnist实例:

复制代码
# -*- coding: utf-8 -*-
"""
Created on Sun Jun  4 10:29:48 2017

@author: Administrator
“”"
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist
= input_data.read_data_sets(MNIST_data/, one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_
=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x,
units
=1024,
activation
=tf.nn.relu,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)
dense2
= tf.layers.dense(inputs=dense1,
units
=512,
activation
=tf.nn.relu,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)
logits
= tf.layers.dense(inputs=dense2,
units
=10,
activation
=None,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op
=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction
= tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
batch_xs, batch_ys
= mnist.train.next_batch(100)
sess.run(train_op, feed_dict
={x: batch_xs, y_: batch_ys})
val_loss,val_acc
=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print(epoch:%d, val_loss:%f, val_acc:%f%(i,val_loss,val_acc))
saver.save(sess,
‘ckpt/mnist.ckpt’,global_step=i+1)
sess.close()

复制代码

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

复制代码
saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
  if val_acc>max_acc:
      max_acc=val_acc
      saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()
复制代码

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

复制代码
saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
  f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
  if val_acc>max_acc:
      max_acc=val_acc
      saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close()
sess.close()
复制代码

 

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

复制代码
sess=tf.InteractiveSession()  
sess.run(tf.global_variables_initializer())

is_train=False
saver
=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
max_acc
=0
f=open(‘ckpt/acc.txt’,‘w’)
for i in range(100):
batch_xs, batch_ys
= mnist.train.next_batch(100)
sess.run(train_op, feed_dict
={x: batch_xs, y_: batch_ys})
val_loss,val_acc
=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print(epoch:%d, val_loss:%f, val_acc:%f%(i,val_loss,val_acc))
f.write(str(i
+1)+’, val_acc: ‘+str(val_acc)+’\n’)
if val_acc>max_acc:
max_acc=val_acc
saver.save(sess,‘ckpt/mnist.ckpt’,global_step=i+1)
f.close()

#验证阶段
else:
model_file
=tf.train.latest_checkpoint(‘ckpt/’)
saver.restore(sess,model_file)

val_loss,val_acc
=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print(val_loss:%f, val_acc:%f%(val_loss,val_acc))
sess.close()

复制代码

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun  4 10:29:48 2017

@author: Administrator
“”"
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist
= input_data.read_data_sets(MNIST_data/, one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_
=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x,
units
=1024,
activation
=tf.nn.relu,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)
dense2
= tf.layers.dense(inputs=dense1,
units
=512,
activation
=tf.nn.relu,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)
logits
= tf.layers.dense(inputs=dense2,
units
=10,
activation
=None,
kernel_initializer
=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer
=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op
=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction
= tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

is_train=True
saver
=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
max_acc
=0
f
=open(ckpt/acc.txt,w)
for i in range(100):
batch_xs, batch_ys
= mnist.train.next_batch(100)
sess.run(train_op, feed_dict
={x: batch_xs, y_: batch_ys})
val_loss,val_acc
=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print(epoch:%d, val_loss:%f, val_acc:%f%(i,val_loss,val_acc))
f.write(str(i
+1)+, val_acc: +str(val_acc)+\n)
if val_acc>max_acc:
max_acc
=val_acc
saver.save(sess,
ckpt/mnist.ckpt,global_step=i+1)
f.close()

#验证阶段
else:
model_file
=tf.train.latest_checkpoint(ckpt/)
saver.restore(sess,model_file)
val_loss,val_acc
=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print(val_loss:%f, val_acc:%f%(val_loss,val_acc))
sess.close()

View Code

 参考文章:http://blog.csdn.net/u011500062/article/details/51728830

你可能感兴趣的:(tensor flow 模型保存和回复,保存精度最高的模型,python 代码)