- NLP学习——信息抽取
P-ShineBeam
NLP基础学习
信息抽取自动从半结构或无结构的文本中抽取出结构化信息的任务。常见的信息抽取任务有三类:实体抽取、关系抽取、事件抽取。1、实体抽取从一段文本中抽取出文本内容并识别为预定义的类别。实体抽取任务中的复杂问题:重复嵌套,原文中多个实体之间共享片段不连续,一个实体由多个不连续片段组成2、关系抽取从文本中抽取一对实体和预定义的关系类型。传统的关系抽取任务实现方案是先进行实体抽取,再输入头尾实体与原文进行关系分
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- windows下GitHub中.sh文件下载的问题解决方案
Anpedestrian
NLP
一些github中的项目为了加快开发者的下载速度,一般不会将项目的数据集与项目绑定到一起,一般都是以.sh后缀的文件格式与项目绑定。比如实体关系抽取项目中的数据集下载问题:对于.sh格式的文件安装需要sh命令,而sh指令是git系统下的操作指令。Git是分布式版本控制系统,那么它就没有中央服务器的,每个人的电脑就是一个完整的版本库,这样,工作的时候就不需要联网了,因为版本都是在自己的电脑上。A.首
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- 【医学知识图谱 自动补全 关系抽取】生成模型 + 医学知识图谱 = 发现三元组隐藏的关系实体对
Debroon
医学大模型:个性化精准安全可控知识图谱人工智能
生成模型+医学知识图谱=发现三元组新关系实体对提出背景问题:如何自动发现并生成医疗领域中未被标注的实体关系三元组?CRVAE模型提出背景论文:https://dl.acm.org/doi/pdf/10.1145/3219819.3220010以条件关系变分自编码器(CRVAE)模型为基础,解决关系医疗实体对发现问题,并生成新的、有意义的医疗实体对。尽管有些疾病与症状之间的关系已经被广泛记录,但仍然
- NER
zelda2333
基操:超详细保姆级讲解&提供代码:基于深度学习的命名实体识别与关系抽取值得一看的命名实体识别的总结:中文命名实体识别总结师兄给的教程:GithubChineseNER针对教程讲解的文章:用深度学习做命名实体识别(附代码)
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- 学习笔记CB003:分块、标记、关系抽取、文法特征结构
利炳根
分块,根据句子的词和词性,按照规则组织合分块,分块代表实体。常见实体,组织、人员、地点、日期、时间。名词短语分块(NP-chunking),通过词性标记、规则识别,通过机器学习方法识别。介词短语(PP)、动词短语(VP)、句子(S)。分块标记,IOB标记,I(inside,内部)、O(outside,外部)、B(begin,开始)。树结构存储分块。多级分块,多重分块方法。级联分块。关系抽取,找出实
- Deepdive关系抽取:特征源码分析及优化加快信息提取
weixin_42001089
人工智能机器学习DDLIBNLPdeepdive
前言本篇不是Deepdive入门教程,而是对其一些源码细节进行了解读,换句话说要深入到内部去看看其具体是怎么做的,所以看本篇的前提是假设读者已经大概清楚了deepdive的使用流程,如果不是很熟悉,或是第一次使用建议先去看一下入门教程。本篇先是分析特征方面的源码,接着是实践部分,即使用ltp替换默认的斯坦福NLP信息抽取部分进而可优化该部分到数秒内,最后简单说一下其模型方面的问题以及其它补充其实关
- 实体关系抽取与属性补全的技术浅析
cooldream2009
NLP知识AI技术知识图谱实体关系抽取关系抽取
目录前言1.实体关系抽取2实体关系抽取的方法2.1基于模板的方法2.2基于监督学习的关系抽取2.3基于深度学习的关系抽取2.4基于预训练语言模型的关系抽取3属性补全3.1属性补全任务简介3.1抽取式属性补全3.2生成式属性补全4未来发展趋势结语前言在信息爆炸时代,文本数据蕴含着丰富的知识,但要将这些知识整理成结构化的形式,关系抽取和属性补全成为至关重要的任务。本文将深入探讨实体关系抽取的任务定义、
- 面向中国企业关系抽取的双向门控递归单元神经网络
精分天秤座的mystery
自然语言处理神经网络知识图谱人工智能
面向中国企业关系抽取的双向门控递归单元神经网络论文原文:论文原文摘要:为了帮助金融从业人员有效识别高风险企业、法人或股东,国内外学者构建了风险预警的企业知识图谱。从财经新闻等非结构化数据中提取企业关系是构建企业知识图的重要手段,但其数据结构的不规则性和处理工具的匮乏给关系提取带来了挑战。针对这一问题,本文提出了SDP-BGRU模型,从非结构化数据中提取企业关系,将企业关系提取视为一个分类问题。该模
- 知识图谱技术综述:构建智能信息网络的关键元素
cooldream2009
知识图谱AI技术知识图谱人工智能
目录前言1知识图谱表示:有向标记图1.1节点表示1.2边的表示1.3知识图谱的动态性2知识图谱存储与查询:图数据存储2.1关系图存储技术2.2图查询语言2.3数据存储的优化3知识抽取:从多结构数据中抽取知识3.1概念抽取3.2实体识别3.3关系抽取3.4事件抽取4知识融合:多源数据的统一命名空间4.1实体对齐4.2本体映射4.3概念匹配5知识推理:基于符号和图结构的推理5.1基于符号的推理5.2基
- 知识抽取-事件抽取
Jarkata
此文为转载,原文链接:知识抽取-事件抽取-徐阿衡的文章-知乎https://zhuanlan.zhihu.com/p/50903358接上一篇知识抽取-实体及关系抽取。事件是促使事情状态和关系改变的条件[Donget.al.,2010]。目前已存在的知识资源(如维基百科等)所描述实体及实体间的关系大多是静态的,而事件能描述粒度更大的、动态的、结构化的知识,是现有知识资源的重要补充。与[关系抽取]相
- 用通俗易懂的方式讲解:实体关系抽取入门教程
深度学习算法与自然语言处理
机器学习自然语言处理人工智能深度学习
信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节。实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系。本文为《实体关系抽取方法研究综述》论文的阅读笔记。文章目录技术提升关系抽取定义关系抽取评价指标实体关系抽取方法基于规则的关系抽取方法基于词典驱动的关系抽取方法基于机器学习的抽取方法基于深度学习的关系抽取方法流水线学习联合
- IT行业都有哪些职位,初学者该如何选择
活字印刷
互联网行业的薪资水准相对较高,刚入行一个月,半年,或者一年超过其他行业薪资很正常。那么,互联网行业究竟有哪些职位呢,又分别适合哪些传统行业转型?1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP)8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11
- 国科大-自然语言处理复习
Kilig*
自然语言处理人工智能
自然语言处理复习实体关系联合抽取流水线式端到端方法检索式问答系统流水线方式信息检索(IR)阶段阅读理解(RC)阶段基于证据强度的重排基于证据覆盖的重排结合不同类型的聚合端到端方式Retriever-Reader的联合学习基于预训练的Retriever-Free方法情感分析联合三元组抽取谨以此博客作为复习期间的记录实体关系联合抽取流水线式流水线式抽取(Pipline):把关系抽取的任务分为两个步骤,
- 图机器学习年度汇集
道亦无名
人工智能机器学习人工智能
一、深度学习模型优化在图机器学习领域,深度学习模型的优化尤为重要。今年的主要进展包括了利用先进的优化算法提高模型精度、减少训练时间以及对大规模图数据的适应性。部分团队还推出了定制化的深度学习模型,特别适用于复杂的图形结构和交互。二、知识图谱技术升级随着知识图谱在多个领域的广泛应用,技术层面也在迅速进化。今年,知识图谱的语义理解、实体链接、关系抽取等技术取得了显著突破。此外,多模态知识图谱的发展,使
- 人工智能论文解读精选 | PRGC:一种新的联合关系抽取模型
NLP论文解读
©NLP论文解读原创•作者|小欣论文标题:PRGC:PotentialRelationandGlobalCorrespondenceBasedJointRelationalTripleExtraction论文链接:https://arxiv.org/pdf/2106.09895.pdf代码:https://github.com/hy-struggle/PRGC前言1.论文的相关背景关系抽取是信息抽
- 论文浅尝 | 基于神经网络的实体识别和关系抽取联合学习
开放知识图谱
本文转载自公众号:PaperWeekly。作者丨罗凌学校丨大连理工大学博士生研究方向丨深度学习,文本分类,实体识别联合学习(Jointlearning)一词并不是一个最近才出现的术语,在自然语言处理领域,很早就有研究者使用基于传统机器学习的联合模型(Jointmodel)来对一些有些密切联系的自然语言处理任务进行联合学习。例如实体识别和实体标准化联合学习,分词和词性标注联合学习等等。最近,研究者们
- 论文浅尝 | 通过对比学习优化用于命名实体识别的双编码器
开放知识图谱
学习深度学习机器学习自然语言处理人工智能
笔记整理:陆星宇,东南大学硕士,研究方向为自然语言处理链接:https://arxiv.org/abs/2208.14565动机命名实体识别(NER)是识别与命名实体相关的文本片段并将其分类到预定义的实体类型(如人物、位置等)的任务。作为信息提取系统中的基本组件,NER已被证明对各种下游任务如关系抽取、指代消解和细粒度观点挖掘有益。以往的工作主要将NER作为序列标记或跨度分类来处理,存在许多局限性
- 一篇关于大模型在信息抽取(实体识别、关系抽取、事件抽取)的研究进展综述
AI知识图谱大本营
chatgpat知识图谱gpt
信息提取(IE)旨在从普通自然语言文本中提取结构化知识(如实体、关系和事件)。最近,生成式大型语言模型(LLMs)展现了在文本理解和生成方面的卓越能力,使得它们能够广泛应用于各种领域和任务。因此,已经有许多研究致力于利用LLMs的能力,为信息提取任务提供可行的解决方案。为了全面系统地回顾和探索LLMs在信息提取任务中的应用,本研究对这一领域的最新进展进行了调查。首先,我们进行了广泛的概述,将这些研
- 不用再找了,这就是 NLP 方向最全面试题库
深度学习算法与自然语言处理
大模型实战大模型NLP与大模型自然语言处理人工智能深度学习机器学习python
大家好,本篇文章总结了自然语言处理(NLP)面试需要准备的学习笔记与资料,该资料目前包含自然语言处理各领域的面试题积累。热门面试题(校招、社招)、公司级专项真题、大厂常考题等,在我们社群具有总结,喜欢记得收藏、关注、点赞。文章目录技术交流群四、NLP学习算法常见面试篇4.1信息抽取常见面试篇4.1.1命名实体识别常见面试篇4.1.2关系抽取常见面试篇4.1.3事件抽取常见面试篇4.2NLP预训练算
- 大型语言模型在实体关系提取中的应用探索(二)
colorknight
人工智能自然语言处理LLM知识图谱实体关系抽取ChatGPTLlama2
上一篇文章我们探讨了如何使用大语言模型进行实体关系的抽取。本篇文章我们将进一步探索这个话题。比较一下国内外几款知名大模型在相同的实体关系提取任务下的表现。由于精力有限,我们无法全面测试各模型的实体关系抽取能力,因此,看到的效果以及分析的结论,也仅限于在该任务下的探讨,不能作为各大模型在该方面能力的结论。这次我们选中用于实验的大模型如下:国外:ChatGPT3.5(OpenAI)、Bard(Goog
- 文档级关系抽取中一个指标 Ign F1的计算方法
wanncy
相信很多做document-level关系抽取的朋友在实验部分都会遇到一个叫IgnF1的参数,这个参数大致是image.png具体参考文章DocRED:ALarge-ScaleDocument-LevelRelationExtractionDataset,Yao,2019ACLReasoningwithLatentStructureRefinementforDocument-LevelRelati
- 24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
是Yu欸
科研笔记与实践机器学习AIGC人工智能论文阅读AI编程copilot笔记
LargeLanguageModelsofCodeFailatCompletingCodewithPotentialBugs写在最前面论文名片对于命名实体识别、关系抽取任务的启发课堂讨论实验自己构建的数据集价值1、论文介绍相关工作:代码补全存在的问题研究的重点论文结论与改进2、Buggy-CodeCompletion代码补全任务的基本概念有错误的代码补全的挑战方案设计的其他考虑3.评估方法评估方法
- 23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
是Yu欸
科研笔记与实践#大模型学习AIGCAI编程软件工程论文阅读笔记经验分享
KeepingPacewithEver-IncreasingData:TowardsContinualLearningofCodeIntelligenceModels写在最前面论文名片nlp中的命名实体识别NER和关系抽取任务RE的启发课堂讨论噪声数据排除基于可塑权重巩固EWC的自适应参数正则化代码克隆检测准确率比较低绪论代码生成大模型PPT学习,连贯动画感(方框是后期添加的)研究方法与思路持续学
- 21Discrete Adversarial Attack(DaK)攻击——针对语义依附代码模型的对抗攻击方法:Destroyer篡改输入程序,Finder寻找关键特征,Merger将关键特征注入
是Yu欸
科研笔记与实践AIGC生成对抗网络安全人工智能论文阅读
DiscreteAdversarialAttacktoModelsofCode写在最前面一些对关系抽取和事件抽取相关的启发和思考摘要总结与展望课堂讨论研究背景与意义对抗攻击针对代码模型的对抗攻击Semantic-adhering语义依附的代码模型针对Semantic-adhering的对抗攻击Dak的意义主要贡献研究内容与方案形式化定义DaK的工作流程DestroyerFinderMerger针对
- 7篇论文梳理关系抽取的经典范式
PaperWeekly
机器学习人工智能深度学习自然语言处理nlp
©作者|眼睛里进砖头了单位|东华大学研究方向|自然语言处理最近在做关系抽取的任务,就花了些时间把关系抽取的经典范式全部cover了一遍,总结对比了一下,7篇文章带你一览关系抽取范式。先说说关系抽取存在的问题下面以关系抽取的存在场景问题以及模型本身存在的问题,来看这个关系抽取这个任务存在哪些问题。1.1抽取的场景问题不同的模型往往在不同的场景下表现出不同的优越性,关系抽取可以分为实体识别及关系抽取两
- #gStore-weekly | gBuilder功能详解之非结构化数据抽取模型
PKUMOD
人工智能python机器学习知识图谱算法图数据库
对于非结构化数据进行数据抽取时需要用到实体识别、关系抽取、属性抽取等众多信息抽取算法。gBuilder在非结构化抽取功能中提供了一系列算法和算子,可通过拖拽的方式进行抽取流程流水线设计。但在实际业务场景中,gBuilder内置的信息抽取模型并不能满足业务的需要,或者使用者本身具有较强研发能力,能够设计准确度更高的算法和模型。因此gBuilder提供了模型标注和训练功能,能够对现在平台已经提供的算法
- NLP在网安领域中的应用(初级)
是Yu欸
自然语言处理人工智能笔记安全网络安全chatgpt
NLP在网安领域的应用写在最前面1.威胁情报分析1.1社交媒体情报分析(后面有详细叙述)1.2暗网监测与威胁漏洞挖掘2.恶意软件检测2.1威胁预测与趋势分析3.漏洞管理和响应4.社交工程攻击识别4.1情感分析与实时监测4.2实体识别与攻击者画像构建4.3文本分析与实体关系抽取5.未来发展趋势与应用前景5.1深度学习与增强学习的整合5.2区块链与分布式技术的融合5.3多模态数据分析的兴起结语写在最前
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本