- 使用支持向量机(SVM)进行股票市场预测
m0_57781768
支持向量机算法机器学习
使用支持向量机(SVM)进行股票市场预测引言股票市场预测是金融领域的一个热门话题,也是一个充满挑战的研究领域。通过准确的市场预测,投资者可以做出更明智的决策,从而获得更高的回报。支持向量机(SVM)作为一种强大的机器学习算法,已被广泛应用于各种分类和回归问题。本文将详细介绍如何使用C++和支持向量机进行股票市场预测,并提供完整的代码示例。支持向量机简介支持向量机(SVM)是一种监督学习算法,最初用
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【Java】已解决java.lang.ClassNotFoundException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Python】一文教你快速遍历文件夹下所有文件
鸽芷咕
python开发语言
鸽芷咕:个人主页个人专栏:《C++干货基地》《粉丝福利》⛺️生活的理想,就是为了理想的生活!博主简介博主致力于嵌入式、Python、人工智能、C/C++领域和各种前沿技术的优质博客分享,用最优质的内容带来最舒适的阅读体验!在博客领域获得C/C++领域优质、CSDN年度征文第一、掘金2023年人气作者、华为云享专家、支付宝开放社区优质博主等头衔。个人社区&个人社群加入点击即可介绍加入链接个人社群社群
- 小南每日 AI 资讯 |美国与日本企业联合投资“星际之门”项目| 罗永浩老师最新初创项目上线! | 25/01/24
小南AI学院
人工智能microsoft
近期人工智能(AI)领域的重要动态随着人工智能技术的迅猛发展,多个领域涌现出令人瞩目的创新。以下是近期AI领域的几项重大进展,涵盖技术创新、行业合作以及AI在各个领域的应用:1.AI技术创新与产品发布DeepSeek发布开源模型R1,挑战传统开发模式中国初创公司深度求索(DeepSeek)于1月27日发布开源AI模型R1。该模型以低成本实现接近OpenAIGPT-3的性能,打破了“越大越好”的传统
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 什么是MOE架构?哪些大模型使用了MOE?
明哲AI
AIGC架构人工智能大模型MOE
在人工智能快速发展的今天,大语言模型(LLM)的规模越来越大,参数量动辄上千亿甚至万亿。然而,更大的模型往往意味着更高的计算成本和更多的资源消耗。混合专家模型(MixtureofExperts,简称MoE)作为一种创新的架构设计,为解决这一难题提供了一个优雅的解决方案。什么是混合专家模型?想象一下,如果把一个大语言模型比作一所综合性大学,传统的模型就像是让所有教授(参数)都参与每一次教学活动。而M
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 某验第四代滑块逆向快速破解
码王吴彦祖
JS逆向实战js逆向node.js加密
本期地址如下,使用base64解码获得网址aHR0cHM6Ly9ndDQuZ2VldGVzdC5jb20v前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站破解某验,某盾已经是司空见惯的事情了,网上也有很多资料查阅,但是大多数都是繁琐、冗长,本文以最直接快速理解的方法讲解,稍微认真一点看完文章,你至少能在半个小时内完成破解本文大致步骤如下:找到加密位置
- 新春特辑:人工智能专题大复盘
互联互通社区
人工智能大数据区块链python编程语言
播洒一年的阳光,收获一路的辉煌;挥洒一年的汗水,绽放一路的明媚;付出一年的辛苦,装点一路的幸福;感谢一年的努力,创造一路的奇迹。新的一年,愿与你再扬帆济海,创造美好精彩!人工智能:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟
- 详解大模型微调数据集构建方法(持续更新)
herosunly
大模型微调数据集构建方法
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。文章目录
- 【新春特辑】2025年1月科技浪潮中的AI最新时事与科技趋势
我的青春不太冷
科技最新时事AI大爆炸学习
2025年1月科技浪潮中的AI最新时事与科技趋势一、AI科技时事人工智能代理(AIAgent)的发展最新进展:人工智能代理正逐步成为科技领域的新热点。这些代理能够自主执行特定任务,如管理日程、回复邮件等。然而,它们仍面临可靠性、可访问性和安全性等方面的挑战。随着技术的不断进步,这些挑战有望逐步得到解决。未来展望:未来,AI代理将更加智能化,能够更好地理解用户需求并提供个性化服务。同时,它们也将成为
- 从System Prompt来看Claude3、Kimi和ChatGLM4之间的差距
herosunly
大模型systempromptgpt4claudekimiChatGLM4
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看Claude3、Kimi和ChatGLM
- 计算机视觉:解锁智能时代的钥匙与实战案例
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁智能时代的钥匙与实战案例在人工智能的浩瀚星空中,计算机视觉无疑是最为璀璨的星辰之一。它不仅让机器拥有了“看”的能力,更是推动了自动驾驶、安防监控、医疗影像分析、智能制造等多个领域的革新。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实际项目中应用这些技术。一、计算机视觉概述计算机视觉,简而言之,是指让计算机系统从数字图像或视频中提取有用信息的过程
- 人工智能导论--第1章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
请根据教材内容,完成进行下面的作业任务。必须包含有教材的具体内容,不能是生成式AI系统的生成内容。参考教材1.1节的内容介绍,谈谈你对“智能”的认识。思维能力是智能的重要特征之一,结合教材1.1.2节内容,从思维的定义、分类及其特点等角度,阐述思维的含义。参考教材1.1.3节的内容介绍,名词解析“人工智能”。参考教材1.2节的内容介绍,介绍人工智能的发展简史。参考教材1.3节的内容介绍,人工智能作
- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 老玩童:互联网智慧助老平台——科技赋能银发族,开启智慧养老新生活
IT源码大师
科技生活
详细描述:1.引言随着全球老龄化社会的加速到来,老年人的生活质量和社会参与度成为社会关注的焦点。传统的养老服务模式往往存在资源不足、服务单一、效率低下等问题,难以满足老年人日益增长的多样化需求。基于互联网技术的智慧助老平台“老玩童”,通过整合物联网、大数据、人工智能等先进技术,构建了一个全方位、智能化、个性化的助老服务体系,为老年人及其家庭提供了全新的解决方案。本文将深入探讨这一平台的核心理念、技
- 什么是ROS2
听风胖耗子
机器人
ROS是机器人操作系统的简称,它本身并不是一个操作系统,而是可以安装在现在已有的操作系统(Linux、Windows、Mac)上的一组用于构建机器人应用程序的软件库和工具集。ROS包括两个版本ROS1和ROS2,ROS1是在2007年由斯坦福大学人工智能实验室与机器人技术公司WillowGarage为了个人机器人项目的合作而开发的,2008年后由WillowGarage来进行推动,目前由开源机器人
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 本地部署LLM工具大比拼:谁才是你的智能之选?
Python_金钱豹
microsoftocr人工智能cnntransformer分类
在人工智能的浪潮中,本地部署LLM工具为我们开启了个性化智能交互的新大门。今天,就带大家深入对比几款热门的本地部署LLM工具:ollama、Llamafile、jan、LLaMa.cpp、GPT4All、LMStudio,从多个关键角度剖析它们的特点与优势,助你挑选出最契合自身需求的智能伙伴。一、安装使用便捷性大排名1.ollama:轻松上手的智能先锋ollama的安装便捷性堪称一流。只需一条简单
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔(拉普拉斯金字塔)
weixin_33908217
人工智能python
拉普拉斯金字塔:使用原始图片-pyrUp(pyrDown(Gi)),获得的结果有一点像边缘轮廓的提取上图的意思:1.进行低通滤波2.进行样本的下采样3.进行样本的上采样4.原始图片-经过上面三步后的图片代码:第一步:读入图片第二步:进行样本的下采样第三步:进行样本的上采样第四步:原始图片-变化后的图片importcv2importnumpyasnpimg=cv2.imread('AM.png')#
- 一张图看懂AI技术架构!开发、训练、部署全链路深度解析!
和老莫一起学AI
人工智能数据挖掘学习llamaai大模型程序员
人工智能(AI)技术的快速发展,使得企业在AI模型的开发、训练、部署和运维过程中面临前所未有的复杂性。从数据管理、模型训练到应用落地,再到算力调度和智能运维,一个完整的AI架构需要涵盖多个层面,确保AI技术能够高效、稳定地运行。本文将基于AI技术架构全景图,深入剖析AI的开发工具、AI平台、算力与框架、智能运维四大核心部分,帮助大家系统性地理解AI全生命周期管理。一、AI开发工具:赋能高效开发,提
- Forbes:2025年人工智能发展前瞻
人工智能学家
人工智能百度
来源:科技世代千高原克雷格·S·史密斯CraigS.Smith2025年1月7日技术发展速度飞快,转眼间,星辰延伸成星线,我们今天所处的位置与几天前相去甚远。越来越难以预测明天我们会身在何处。有一点是明确的:我们正在进入通用人工智能(AGI)领域,超级人工智能(ASI)现在似乎触手可及。无论如何定义,AGI不会突然出现;它会不断发展,我们已经看到了它逐渐展开的迹象。AGI的曙光AGI一直以来都是我
- 数字化转型导师坚鹏:AI大模型DEEPSEEK重构人工智能格局的里程碑
银行数字化转型导师坚鹏
人工智能重构DEEPSEEKAI
数字化转型导师坚鹏:AI大模型DEEPSEEK重构人工智能格局的里程碑在人工智能领域迅猛发展的浪潮中,每一次重大技术突破都犹如一颗投入平静湖面的巨石,激起千层浪。DEEPSEEK的发布,无疑是近期人工智能领域最受瞩目的事件之一。凭借其独特的技术优势和创新理念,DEEPSEEK迅速在全球人工智能舞台上崭露头角,对现有的人工智能格局产生了多维度、深层次的影响。一、技术突破:从"追赶者"到"规则制定者"
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,