题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1055这几天脑子不太好尽刷些傻叉的水题。。。区间DP,没什么好说的。。。除了吐槽一下自己因为没删注释性输出而WA了好几次之外额。。。代码:#include#include#includeusingnamespacestd;#definerep(i,x)for(inti=0;i++
【数据结构题目讲解】BZOJ 3306 - 树 利用DFS序求解
阿史大杯茶
数据结构经典数据结构算法c++
BZOJ3306-树Description\mathrm{Description}Description给定111棵以111为根节点的nnn个点的树,接下来有mmm次操作:Vxy将xxx点的权值更改为yyyEx将根改为xxx点Qx查询xxx子树的最小值Solution\mathrm{Solution}Solution首先,考虑如果没有换根操作(即E操作),那么直接使用DFS序配合线段树的方式即可解
BZOJ-2127: happiness(最小割)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2127明显是最小割模型,首先,S向每个节点连边,容量为文科的价值,每个点向T连边,容量为理科的价值,接下来考虑相邻节点的情况(设a,b),只要a,b之中有一个选了理科,那么就要扣除共同选文科的价值,反之亦然,那么新增一个辅助点v,对于S向v连边,容量为a,b共同选文科的价值,然后v向a,b连边,
寒假思维训练day21
嘗_
算法动态规划
今天更新一道不错的状态压缩DP题,顺带总结一下状态压缩DP。摘要:Part1浅谈状态压缩DP的理解Part2浅谈对状态机DP的理解Part3关于状态压缩DP的1道例题Part1状态压缩DP1、状态压缩DP:事物的状态可能包含多个特征,但是事物的状态之间却可以互相转移,此时我们引入状态压缩DP,将事物的复杂的状态用一个数字来替代,此时事物的状态可以用数组的某个位置表示,从而可以进行状态的转移。2、常
牛客周赛 Round 32 F.小红的矩阵修改【三进制状态压缩dp】
lianxuhanshu_
动态规划算法动态规划
原题链接:https://ac.nowcoder.com/acm/contest/75174/F时间限制:C/C++1秒,其他语言2秒空间限制:C/C++262144K,其他语言524288K64bitIOFormat:%lld题目描述小红拿到了一个字符矩阵,矩阵中仅包含"red"这三种字符。小红每次操作可以将任意字符修改为"red"这三种字符中的一种。她希望最终任意两个相邻的字母都不相同。小红想
BZOJ 5441: [Ceoi2018]Cloud computing
weixin_34153893
背包#include#includeusingnamespacestd;intn,m,Len;longlongF[2][100005];structnode{intc,f,v;}E[100005];boolcmp(nodea,nodeb){returna.f>b.f||(a.f==b.f&&a.c>b.c);}intmain(){scanf("%d",&n);for(inti=1;i0)tomax
BZOJ5445 [Ceoi2018]Toys
yjjr
数论bzojOI成长历程
标签:数学题目题目传送门题意简述:达达兔有很多不同种类玩具,每种玩具可能有很多个(存在区别),每天达达兔可以在不同种类的玩具中每种选择一个,组合起来,最多可以玩耍n天(n天中不存在重复组合的情况),问有多少种情况可以满足,求达达兔可以拥有多少玩具分析一眼就知道是数学题然后根据样例简单推推发现答案就是可以将n分解的不同组合算是水题了吧qwqcode#include#include#include#i
bzoj5441: [Ceoi2018]Cloud computing
weixin_30319153
跟着大佬做题。。这题也是有够神仙了。观察一下性质,c很小而f是一个限制条件(然而我并不会心态爆炸)%了一发,就是把电脑和订单一起做背包,订单的c视为负而电脑的v为负,f由大到小排序做背包#include#include#include#include#include#includeusingnamespacestd;typedeflonglongLL;structnode{intc,f;LLv;}
BZOJ 5441 [Ceoi2018]Cloud computing
weixin_33743880
数据结构与算法php
题目链接https://www.lydsy.com/JudgeOnline/problem.php?id=5441题解按照频率排序后转化成背包问题。代码#include#include#includeintread(){intx=0,f=1;charch=getchar();while((ch'9')){if(ch=='-'){f=-f;}ch=getchar();}while((ch>='0')
BZOJ5441 [Ceoi2018]Cloud computing
yjjr
DPbzojOI成长历程思维背包
标签:DP,思维题面Description农夫约翰创立了一家为客户提供云端计算服务的公司,但是他还没开始购买计算机。于是他去了电脑商店,看了商店里所有的n台电脑的配置属性列表。每台电脑的属性有CPU核心数量ci,工作频率fi,价格vi,即这台电脑有ci个可以独立工作,不会互相干扰的CPU核心,可以同时给每个CPU核心分配不同的任务。当一个客户在约翰的公司里下订单的时候,订单里会指定特定的CPU核心
BZOJ5442 [Ceoi2018]Global warming
yjjr
DP数据结构bzojOI成长历程
标签:LIS,DP,树状数组题目题目传送门Description给定n(n≤200,000)n(n\leq200,000)n(n≤200,000),你可以将任意a[l]a[l]a[l]至a[r](1≤l≤r≤n)a[r](1\leql\leqr\leqn)a[r](1≤l≤r≤n)每一个元素加上一个d(−x≤d≤x)d(-x\leqd\leqx)d(−x≤d≤x),求aaa数组的最大严格上升子序列
BZOJ 1975 SDOI2010 魔法猪学院 A*k短路
PoPoQQQ
可并堆BZOJA*BZOJBZOJ1975A-stark短路
题目大意:给定一个值E求起点到终点的最多条路径使长度之和不超过Ek短路的A*算法……每个点有一个估价函数=g[x]+h[x]其中g[x]是从源点出发已经走了的长度h[x]是从这个点到汇点的最短路首先先在反图上跑一遍SPFA求出每个点的h[x],然后将源点的g[x]+h[x]加入堆每次取出堆顶时将堆顶的g[x]向所连接的边扩展第k次取出汇点即是答案其中有一个剪枝就是当第k+1次取出某个点时不继续拓展
状态压缩和状压DP
lvanzn
问题:n*n的棋盘放置n个点,保证每一行,每一列都有且只有一个点,有几种放置方式?一、组合数解法:ans=n!二、状态压缩DP:方案数目:f[0]=1,其他初始化为0状态:10010=>21+24=2+16=18->一个整数表示一种状态->拆解整数->表示了所有的部件的当前状态遍历顺序(第一层):s:1->(1(111..11(n个位))(第二层):i:1->n(枚举所有的部件)已知当前的状态是s
状态压缩DP--最短Hamilton路径问题的状态压缩动态规划解法
派大星45599
数据结构与算法分析动态规划算法
在图论中,Hamilton路径是一种经过图中每个顶点恰好一次的路径。本文将详细介绍如何使用状态压缩动态规划(DynamicProgramming,DP)方法求解最短Hamilton路径问题,即找到一条经过所有顶点恰好一次且总权重最小的路径。题目链接:91.最短Hamilton路径-AcWing题库问题描述算法概述状态压缩动态规划可以在处理特定类型的组合问题时非常有用,尤其是当问题涉及到需要考虑集合
C++ 动态规划 状态压缩DP 蒙德里安的梦想
伏城无嗔
算法笔记力扣动态规划c++动态规划
求把N×M的棋盘分割成若干个1×2的长方形,有多少种方案。例如当N=2,M=4时,共有5种方案。当N=2,M=3时,共有3种方案。如下图所示:2411_1.jpg输入格式输入包含多组测试用例。每组测试用例占一行,包含两个整数N和M。当输入用例N=0,M=0时,表示输入终止,且该用例无需处理。输出格式每个测试用例输出一个结果,每个结果占一行。数据范围1≤N,M≤11输入样例:121314222324
C++ 动态规划 状态压缩DP 最短Hamilton路径
伏城无嗔
动态规划力扣算法笔记c++动态规划
给定一张n个点的带权无向图,点从0∼n−1标号,求起点0到终点n−1的最短Hamilton路径。Hamilton路径的定义是从0到n−1不重不漏地经过每个点恰好一次。输入格式第一行输入整数n。接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。对于任意的x,y,z,数据保证a[x,x]=0,a[x,y]=a[y,x]并且a[x,y]+a[y,z]≥a[x,z]。输出
详解洛谷P2016 战略游戏/BZOJ0495. 树的最小点覆盖之战略游戏(贪心/树形DP)
伟大的拜线段树jjh
游戏
DescriptionBob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.FormatInput第一行N,表示树中结点的
CF1404BTree Tag/ BZOJ0487. 树上追逐详解
伟大的拜线段树jjh
算法图论深度优先
1.题目传送门:TreeTag-洛谷2.思路我们考虑什么情况下Alice可以获胜.如果≤da,则Alice可以一步就追上Bob.如果Alice处在一个能覆盖整棵树的点,即2da+1≥树的直径,那么Bob也无论走到哪里Alice都能追到,Alice获胜.其它情况下,Alice会一步一步逼近Bob,并一定能把Bob逼近某棵子树.如果当前Alice占据一个点,使Bob无论怎么走都还在Alice的控制范围
BZOJ0481. 树的重心之砍树Link Cut Centroids
伟大的拜线段树jjh
深度优先算法图论
题目思路分类讨论。首先当树只有一个重心的时候,我们删掉最小的边再加上原边即可.再看有两个重心的情况.显然这棵树必定是类似这样的:即删掉A后,以B为根的子树是剩下的最大连通块,反之亦然.那就可以得到一个结论:删掉边(A,B)后,两棵树的大小相等.那我们只要使两棵树的大小不相等,且不使新的点成为重心即可.那就考虑直接从A树中取一位编号最小叶子节点,把这个节点与它父亲的边断开,连到B的直接儿子中编号最小
BZOJ-2753: [SCOI2012]滑雪与时间胶囊(代码)
AmadeusChan
这道题的解法据说是按终边高度第一关键字,边长第二关键字排序,然后KRUSKAL最小生成树,但是本弱实在不懂怎么证明,求大神指教。代码:#include#include#includeusingnamespacestd;#defineMAXN200001#defineMAXM2000001intfather[MAXN];intn,m;inth[MAXN];structedge{intt,d;edge
状态压缩DP
琛_
AcWing算法提高课动态规划算法
状态压缩DP小国王玉米田炮兵阵地愤怒的小鸟宝藏蒙德里安的梦想最短Hamilton路径小国王在n×n的棋盘上放k个国王,国王可攻击相邻的8个格子,求使它们无法互相攻击的方案总数。输入格式共一行,包含两个整数n和k。输出格式共一行,表示方案总数,若不能够放置则输出0。数据范围1≤n≤10,0≤k≤n2输入样例:32输出样例:16算法解析算法构造这道题目,根据数据范围,不难得出,这道题目考察的是状态压缩
状态压缩DP相关
刘先森222
算法
状态压缩动态规划学习笔记-AcWing状态压缩动态规划算法笔记(二)-AcWing【笔记】状压DP复习笔记-AcWing状态压缩dp-AcWing
BZOJ-2588: Spoj 10628. Count on a tree(树上路径第K最值=LCA+可持久化线段树)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2588思路:每个节点上建立一棵维护权值的可持久化线段树(维护从根到这个节点的权值),以他的父节点为历史版本建立,每次查询时直接在线段树上二分即可,所以只需要联立三棵可持久化线段树T[u],T[v],T[lca(u,v)]即可快捷查询。复杂度O(nlogn)********代码:****#incl
BZOJ-1079: [SCOI2008]着色方案(DP)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1079囧囧的一道六维DP,记得用longlong代码:#include#include#include#include#includeusingnamespacestd;#defineMOD(x)(x%=MAX)#defineMAX1000000007#definelllonglongboolf
BZOJ1731: [Usaco2005 dec]Layout 排队布局 差分约束 spfa
Oakley_
BZOJ差分约束spfa
差分约束:最大距离最短路,最小距离最长路最短路的三角不等式:d[i]-d[j]j)物理意义:j,i之间的距离为D,而d[i]-d[j]一定=D(j>i)物理意义:j,i之间的距离为D,而d[i]-d[j]一定>=D,所以求得是最长路建图:j向i连接一条权值为D的边1.题目中说牛的顺序和编号顺序一致,即需要满足d[i]-d[i-1]>=0;转化一下d[i-1]-d[i]=d[x]+D;转化一下d[x
bzoj1731 [Usaco2005 dec]Layout 排队布局(差分约束+spfa)
Icefox_zhx
bzoj差分约束最短路
这题我觉得应该先判有没有负环啊。。。如果1和n不连通,我们从1开始做spfa,如果n在一个负环中呢?我们就判断不到这个负环了啊。。我们会输出-2,可是我觉得应该是-1,根本不存在合法方案啊。。。迷。我先用dfs判负环的程序在bzoj上跑了2900+ms,可怕。。不判的话才20ms。。不过话说dfs版spfa判负环也不会慢这么多啊。。待我研究下。#include#include#includeusi
多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
[电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出