- Yearning SQL审计系统:常用SQL语句全解析与最佳实践
ivwdcwso
运维与云原生SQL审计Yearning数据库安全MySQL审计安全合规数据库运维
在企业数据库管理中,SQL审计系统扮演着至关重要的角色,它能帮助DBA团队有效监控和管理数据库操作,防范潜在风险。Yearning作为国内优秀的开源SQL审计平台,凭借其简洁高效的特性,受到越来越多企业的青睐。本文将详细介绍Yearning中常用的SQL审计语句,帮助您更好地利用这一强大工具。一、Yearning简介Yearning是一款开源的SQL审核平台,主要功能包括SQL查询审计、SQL执行
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 2025年大模型学习新攻略!掌握未来AI的关键技能
AI大模型-大飞
人工智能产品经理程序员AgentAI大模型大模型教程
1.公开课(视频):李宏毅机器学习斯坦福CS336:从零开始构建语言模型卡内基梅隆大学【多模态机器学习】RAGFromScratchHuggingFaceNLP课程2.机器学习和编程基础:pytorch官方中文教程[中英字幕]吴恩达机器学习李宏毅机器学习3.Attention机制:论文:《AttentionIsAllYouNeed》Transformer论文逐段精读【论文精读】-跟李沐学AIzhi
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 全方位入门大模型应用开发,只需一招搞定:吴恩达系列课程中文教程实战指南!
AI小白熊
人工智能机器学习自然语言处理ai大模型程序员转行
随着生成式人工智能技术的迅速发展,大语言模型(LLM,LargeLanguageModel)成为了当下AI领域最炙手可热的赛道之一。如何快速、高效地掌握LLM的开发要领,成为众多开发者关注的热点。而由Datawhale团队打造的《面向开发者的大模型手册-LLMCookbook》项目,正好为有志于投身大模型开发的中文学习者提供了一套体系化、本地化的入门与实战宝典。本文将为你详细解析这个项目包含的各类
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- 斯坦福CS229机器学习笔记-Lecture2-线性回归+梯度下降+正规方程组
Teeyohuang
机器学习CS229-吴恩达机器学习笔记CS229吴恩达机器学习
声明:此系列博文根据斯坦福CS229课程,吴恩达主讲所写,为本人自学笔记,写成博客分享出来博文中部分图片和公式都来源于CS229官方notes。CS229的视频和讲义均为互联网公开资源Lecture2这一节主要讲的是三个部分的内容:·LinearRegression(线性回归)·GradientDescent(梯度下降)·NormalEquations(正规方程组)1、线性回归首先给了一个例子,如
- 04 Deep learning神经网络编程基础 梯度下降 --吴恩达
狂小虎
系统学习pythonDeepLearning深度学习神经网络人工智能
梯度下降在深度学习的应用梯度下降是优化神经网络参数的核心算法,通过迭代调整参数最小化损失函数。核心公式参数更新规则:θt+1=θt−η∇J(θ
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- 吴恩达MCP课程(5):research_server_prompt_resource.py
ZHOU_CAMP
MCPmcpagent
代码importarxivimportjsonimportosfromtypingimportListfrommcp.server.fastmcpimportFastMCPPAPER_DIR="papers"#InitializeFastMCPservermcp=FastMCP("research")@mcp.tool()defsearch_papers(topic:str,max_results
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- 自然语言处理 (NLP) 学习路线
我喝AD钙
我的学习笔记自然语言处理学习人工智能
自然语言处理学习路线1.基础准备(可参考mooc学习)2.学习基础NLP技术(可参考mooc学习)3.经典机器学习算法在NLP中的应用(可参考吴恩达机器学习课程)4.深度学习基础(基础参考吴恩达、工具看TF、Keras官网手册)5.深度学习在NLP中的应用(arxiv论文原文和解析博客,实战参考gitee/github)6.现代NLP模型(arxiv论文原文和解析博客,实战参考gitee/gith
- 吴恩达机器学习笔记:特征与多项式回归
ちゆきー
机器学习笔记回归
1.特征和多项式回归如房价预测问题,ℎθ(x)=θ0+θ1×frontage+θ2×deptℎx1=frontage(临街宽度),x2=deptℎ(纵向深度),x=frontage∗deptℎ=area(面积),则:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方
- 吴恩达机器学习笔记:多维梯度下降实践
ちゆきー
机器学习笔记计算机视觉
1.特征放缩在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如
- 吴恩达机器学习笔记:监督学习
ちゆきー
机器学习笔记学习
1.回归我们用一个例子介绍什么是监督学习把正式的定义放在后面介绍。假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。我们应用学习算法,可以在这组数据中画一条
- 吴恩达深度学习作业之 PyTorch 实现多分类任务
海盗儿
深度学习pytorch分类
在这次作业中会学到:(参考https://zhuanlan.zhihu.com/p/536483424)PyTorch与NumPy的相互转换PyTorch的常见运算(矩阵乘法、激活函数、误差)PyTorch的初始化器PyTorch的优化器PyTorch维护梯度的方法数据集本项目中,我们要用到一个平面点数据集。在平面上,有三种颜色不同的点。我们希望用PyTorch编写的神经网络能够区分这三种点。im
- 宝藏资源库!10个免费网站助你成为AI达人
算家计算
AI干货分享人工智能AI学习AI相关网站分享小白必看算家云租算力到算家云
人工智能已成为当今最炙手可热的领域之一,但面对海量学习资源,许多初学者常感无从下手。本文将精选10个免费AI学习平台,涵盖理论课程、实战项目、社区资源与工具库,并标注难度、优缺点及适用人群,助你高效入门AI!一、核心学习平台1.Coursera官网链接:Coursera难度:⭐️⭐️(初级到进阶)推荐课程:吴恩达《深度学习专项课程》(包含5门子课程,覆盖神经网络、卷积网络、序列模型等)。优点:课程
- 大佬带你学习大模型Prompt技巧全解析,看完这篇文章就够了!
和老莫一起学AI
学习prompt语言模型人工智能ai程序员转行
在数字化浪潮的推动下,AI大模型以其卓越的自然语言处理能力和智能交互特性,迅速在很多领域中占据了重要地位。比如:与传统客服相比,AI大模型展现出了无可比拟的优势,通过精心设计的prompt,能使我们在客服托管、智能客服等多个项目和业务场景中发挥显著作用,大幅提高工作效率,优化成果质量。为了精进个人能力以及助力产研学习氛围的提升,本人在学习完吴恩达教授以及其他前辈们有关prompt的课程之后,整理了
- 吴恩达深度学习复盘(19)XGBoost简介|神经网络与决策树
wgc2k
#深度学习深度学习神经网络决策树
XGBoost多年来,机器学习研究人员提出了许多构建决策树的方法,目前最常用的方法是对样本或决策树的实现收费。其中,XGBoost是一种非常快速且易于使用的开源实现,已成功用于赢得许多机器学习竞赛和商业应用。算法原理基本思想:在构建决策树时,不是每次都以等概率选择训练样本,而是对那些之前已训练的树集合仍判断错误的样本给予更高的选择概率。这类似于在训练和教育中的“刻意练习”,例如学钢琴时专注于弹奏不
- 诺奖得主杰弗里·辛顿爆料:“AI教父”名号是吴恩达带头喊出来的、AI会比人类更聪明...
CSDN资讯
人工智能
责编|梦依丹出品丨AI科技大本营(ID:rgznai100)继去年荣获诺贝尔物理学奖引发全球关注后,“AI教父”杰弗里·辛顿(GeoffreyHinton),这位深度学习领域的奠基人近日在接受最新采访中坦言:“几乎所有顶尖研究人员都认为AI将变得比人类更聪明。”他之前在诺贝尔奖的官方采访中表示:AI最快5年超越人类智慧。具体见诺奖采访深度学习教父辛顿:最快五年内AI有50%概率超越人类,任何说“一
- 【学习笔记】机器学习(Machine Learning) | 第三章(1)| 多特征与向量化计算
北温凉
机器学习笔记
机器学习(MachineLearning)简要声明基于吴恩达教授(AndrewNg)课程视频BiliBili课程资源文章目录机器学习(MachineLearning)简要声明一、多特征(MultipleFeatures)概述1.1特征表示方法1.2线性回归模型扩展扩展说明一、多特征(MultipleFeatures)概述1.1特征表示方法在机器学习中,当数据包含多个特征时,我们需要使用特征向量来表
- 吴恩达深度学习(17)独热编码|回归树简介
wgc2k
#深度学习深度学习回归人工智能
独热编码(One-HotEncoding)简介在之前看到的示例中,每个特征只能取一个或两个可能的值,比如耳朵形状只有尖或,胡须只有有或无。但如果特征可以有两个以上的取值该需要特殊处理。以宠物收养中心应用程序的新训练集为例,除了耳朵形状特征外,其他数据都相同。此时耳朵形状不再只有尖和松软两种,还可以是椭圆形,即耳朵形状(ESHI)特征仍是分类值特征,但从有两个可能值变为有三个可能值。当基于这个特征进
- 拆解吴恩达开源的翻译AI Agent
weixin_47233946
开源人工智能
斯坦福大学教授吴恩达一直非常推崇AIAgent,之前他提出过AIAgent的四种工作模式,分别是Reflection(反思)、Tooluse(工具使用)、Planning(规划)和Multi-agentcollaboration(多智能体协同)。近日,他又开源了一个翻译AIAgent,他认为AI智能体机器翻译对改进传统神经机器翻译”具有巨大潜力,尚未被完全发掘“,在周末的时间,写了一个演示项目。开
- 一文详细梳理!大模型从理论到实战落地必备干货!零基础入门到精通,收藏这一篇就够了
网络安全大白
科技网络安全程序员安全网络安全系统安全
在人工智能的浩瀚星辰中,大模型犹如璀璨的北极星,引领着技术的前沿方向。它们不仅代表了深度学习领域的最新突破,更成为了推动各行各业智能化转型的关键力量。本文笔者总结了大模型从理论研究到实战落地所需具备的所有知识干货,与大家分享~基础知识数学深入浅出动态可视化数学之美(几何、微积分、概率论、线性代数等):https://space.bilibili.com/88461692/机器学习吴恩达机器学习入门
- 深度学习教程 | 经典CNN网络实例详解
Dashesand
深度学习cnn网络
深度学习教程|经典CNN网络实例详解作者:韩信子@ShowMeAI教程地址:www.showmeai.tech/tutorials/3…本文地址:www.showmeai.tech/article-det…声明:版权所有,转载请联系平台与作者并注明出处收藏ShowMeAI查看更多精彩内容本系列为吴恩达老师《深度学习专项课程(DeepLearningSpecialization)》学习与总结整理所得
- 【深度学习基础】第四十七课:BLEU得分
x-jeff
深度学习基础深度学习人工智能nlp
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.BLEU得分机器翻译的一大难题是一个法语句子可以有多种英文翻译,并且翻译质量都同样好。那么我们该怎样评估一个机器翻译系统呢?常用的一个方法就是使用BLEU得分。BLEU原文:PapineniK,RoukosS,WardT,etal.Bleu:amethodforautomaticevaluationofmachi
- 吴恩达深度学习复盘(1)神经网络与深度学习的发展
wgc2k
#深度学习深度学习人工智能
一、神经网络的起源与生物学动机灵感来源神经网络的最初动机源于对生物大脑的模仿。20世纪50年代,科学家试图通过软件模拟神经元的工作机制(如树突接收信号、轴突传递信号),构建类似人类大脑的信息处理系统。生物神经元的简化模型人工神经网络采用数学模型简化生物神经元的行为:每个神经元接收输入(数字信号),通过加权求和与激活函数处理后输出。尽管这一模型远不及真实大脑复杂,但早期研究认为其可能复现智能行为。二
- 人工智能(11)——————计算机视觉
長安一片月
人工智能人工智能计算机视觉
目录声明正文1、简介2、步骤1)图像分类2)目标检测(目标定位)3)目标跟踪4)图像分割普通分割语义分割实例分割5)图像生成3、总结声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文1、简介我们先来看看百度百科里对计算机视觉的介绍:计算机视觉是一门研究如何使机器“看”的科学,更进一步的说
- 人工智能(10)——————自然语言处理
長安一片月
人工智能人工智能自然语言处理学习transformer
声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文简介其实在现在的人工智能领域,很多东西都是相互关联,相互促进的。比如机器学习可以引入到自然语言处理,计算机视觉等多个类别当中,而自然语言处理中特有的seq2seq方法也可以用于机器学习当中。但是根本上这些类别都存在自己独有之处。自然语言处
- 走进吴恩达:揭秘Prompt Engineering 提示词工程
AI大模型教程
prompt人工智能大模型langchain提示词工程LLMRAG
PromptEngineering概览何为Prompt在自然语言处理领域,尤其是与大型语言模型(LLM)互动时,Prompt起着至关重要的作用。形象地说:LLM是金矿:大型语言模型如同深藏不露的金矿,蕴藏着巨大的知识与创造力潜力。Prompt是钥匙:而Prompt,则是开启这座金矿的钥匙。通过精心设计的问题或指令(Prompt),我们能引导模型产生特定的、有价值的输出,如文章创作、代码编写、问题解
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那