- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- 必知!10大机器学习算法
人工智能
必知!10大机器学习算法7分钟阅读2025年02月06日“机器学习是一门让计算机在没有明确编程的情况下采取行动的科学。”——吴恩达近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】1.K最近邻(KNN)KNN是一种简单却强大的分类算法,它依据数据点之间的邻近程度来判断类别归属。具体做法是,
- AI大模型探秘:核心能力与应用场景深度解析
程序员辣条
人工智能javaAI大模型大模型spring
AI大模型是什么通过概念考察的方式,拆开来了解AI大模型。AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。大模型:把LM比作人的大脑。大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。分类语言大模型:Ch
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- 吴恩达Prompt Engineering(2/9): Guidelines for Prompting
就叫你天选之人啦
LLM学习prompt深度学习人工智能学习笔记linux
目录PrincipalsofPromptingPrinciple1Tactic1:Tactic2:AskforstructuredoutputTactic3:Checkwhetherconditionsaresatisfied/CheckassumptionsrequiredtodothetaskTactic4:Few-Shotprompting,Givesuccessfulexamplesofc
- 吴恩达《提示词工程》(Prompt Engineering for Developers)课程详细笔记
拾工
人工智能prompt笔记人工智能
课程简介目标:帮助开发者理解如何有效地使用大语言模型(LLMs),提升通过提示词解决问题的能力。适用对象:开发者、AI从业者、产品经理等,希望通过提示词优化生成模型性能的人。第1章:提示词工程基础1.什么是提示词工程提示词工程是一种优化与大语言模型(如GPT)交互的技术,旨在通过设计有效的提示词(prompts)引导模型生成所需的输出。主要思想:用正确的方式提问以得到最佳答案。2.提示词的组成指令
- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- Yearning开源MySQL SQL审核平台
boonya
#开源观察#安全与运维开源mysql数据库
一款MYSQLSQL语句/查询审计工具,为DBA与开发人员使用.本地部署,注重隐私,简单高效的MYSQL审计平台。它可以通过流程审批,实现真实线上环境sql的审核和执行,还可以回滚执行,能够确保线上SQL更新的可靠性。资源获取官网:YearningSQL审核平台Gitee:Yearning:YearningMysqlSQL审核平台Github:https://github.com/cookieY/
- 吴恩达系列——微调(Fine-tuning)与生成模型的应用
疯狂小料
aiprompt
微调(Fine-tuning)是指在已有预训练模型的基础上,对模型进行进一步训练,以适应特定任务或需求。在自然语言处理领域,生成模型通过微调可以在特定场景下生成更加准确、一致的输出,同时保护用户的隐私,减少不当信息的泄露。本文将结合生成模型的工作原理和实际应用,解释微调如何提升生成模型的效果,并探讨其在保护隐私方面的优势。1.生成模型与Prompt的作用生成模型,如GPT系列,通常通过接受一个输入
- AI代码生成器赋能软件原型快速构建:吴恩达的最佳实践指南
前端
快速构建软件原型对于验证想法、迭代产品至关重要。而随着人工智能技术的飞速发展,AI代码生成器等AI辅助编程工具的出现,为开发者提供了前所未有的效率提升。本文将结合吴恩达教授的观点,探讨如何利用AI工具,高效构建软件原型。吴恩达教授强调选择合适的技术栈并有效利用AI工具是关键,这将帮助开发者在短时间内完成原型开发,快速验证其想法。选择并精通“有主见”的技术栈:效率为王吴恩达教授推荐的技术栈——Pyt
- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- 人工智能中的哲学
Dijkstra's Monk-ey
深度学习人工智能哲学笔记AIGC业界资讯需求分析程序人生
今天聊一个比较轻松的话题:人工智能中的哲学。人工智能会不会问:我是谁,我从哪里来,我要到哪里去?以下是《人工智能哲学》这本书的读书札记。〇、前言人工智能威胁论支持者:埃隆·马斯克、史蒂芬·霍金、比尔·盖茨反对者:马克·扎克伯格、吴恩达、佩德罗·多明戈斯人工智能是什么?应不应该发展人工智能?未来机器人和自动化会不会完全取代人类劳动力?人类的本质是不是一种机器?未来会不会制造出有意识的计算机?未来人类
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- python里的i_Python 中[::] 与 [:,:,i] 总结
桌游顽主的航仔
python里的i
最近在学吴恩达的DeepLearning中的第五门课SequenceModel,第一个lab是用Numpy搭建RNN,在搭建RNN的时候用到了Numpy的Slicing([:,:,i]),在这里想总结下[:,:,i]与[::i]的用法,有写的不对的地方请随时指教。总的来说,[::i]是Python中的基础索引,而[:,:,i]是Numpy中对于多维度Array的提取,在StackOverflow中
- 全网爆火的第一本程序员的Agent入门书籍——《大模型应用开发 动手做AI Agent》
AI大模型-搬运工
人工智能大模型程序员AIAgentAI大模型LLMpromp
AIAgent火爆到什么程度?OpenAI创始人奥特曼预测,未来各行各业,每一个人都可以拥有一个AIAgent;比尔·盖茨在2023年层预言:AIAgent将彻底改变人机交互方式,并颠覆整个软件行业;吴恩达教授在AIAscent2024演讲中高赞:AIAgent是一个令人兴奋的趋势,所有从事AI开发的人都应该关注。Agent是未来最重要的智能化工具。对于程序员来说,是时候将目光转向大模型的应用开发
- 一点机器学习的体会
zfq212
我关心的主要是机器学习有什么用,对未来哪些行业,领域,应用会产生变革级别的影响。为了了解这些,我感觉我首先要了解现在机器学习的主要方向,他们的主要应用,相关的主要工程工具。机器学习跟线性代数和统计联系比较多,所以在做了解时,很容易一不小心就会陷入理论的坑中,不易自拔。传统的机器学习有一套较完整的理论和算法,去scikitlearning网站可以有个大致的了解,或者听下吴恩达老师那门基础ML课程(网
- 【深度学习】吴恩达-课后作业-搭建多层神经网络以及应用
—Xi—
深度学习深度学习机器学习人工智能python神经网络
Ng的深度学习,其实前几个月就听完了,课后作业也是大懂不懂的都做了一遍,代码也跟着各种各样的参考敲了一遍,但暑假几个月没怎么学习。。。基本也忘得差不多了,这几周回顾了一下深度学习这门课的笔记,看了别的博主的总结,对CNN,RNN,LSTM,注意力机制等网络结构进行了复盘,虽然感觉自己很心浮气躁,一边也在学集成学习那几个算法和推荐系统相关,这里也告诉自己:贪多嚼不烂,心急吃不了热豆腐,慢慢来,还是要
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 卷积神经网络吴恩达coursera
stoAir
吴恩达深度学习笔记cnn人工智能神经网络
ConvolutionalNNFoundationsofCNNmatrixsconvolutionEdgedetectionVertical/horizontialconv-forward(tf.nn.cov2d)matrix(6×6)∗filter(3×3)=matrix(4×4)matrix(6\times6)*filter(3\times3)=matrix(4\times4)matrix(6
- 上 GitHub 热榜,星星暴涨,这个项目相继超越了 Archery, Flyway 和 Yearning
「登上GitHubTrending星星超越Yearning键盘的敲击不停传播开发的福音」⚡️Bytebase是一款面向开发和DBA的一站式数据库CI/CD工具。它的所有代码都开源在GitHub上。GitHub也是我们触达全球用户的核心阵地。虽然GitHubStar数一直是一个饱受争议的指标,以致于被定性成了虚荣指标(VanityMetric)。但它依然是当前开源世界里最流行的指标。由此还衍生出了一
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- LLM(2)之指令提示词(Prompt)基础教学
Once_day
CS小白之路#LLM实践成长prompt自然语言处理人工智能
LLM(2)之指令提示词Author:OnceDayDate:2024年2月15日全系列专栏请查看:LLM实践成长_Once_day的博客-CSDN博客参考文章:中文完整版全9集ChatGPT提示工程师|AI大神吴恩达教你写提示词ChatGPTShortcut-简单易用的ChatGPT快捷指令表,让生产力倍增!标签筛选、关键词搜索和一键复制Prompts|Tagfiltering,keywords
- 【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)
Yaoyao2024
机器学习线性回归学习
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 深度学习-吴恩达L1W2作业
向来痴_
深度学习人工智能
作业1:吴恩达《深度学习》L1W2作业1-Heywhale.com作业2:吴恩达《深度学习》L1W2作业2-Heywhale.com作业1你需要记住的内容:-np.exp(x)适用于任何np.arrayx并将指数函数应用于每个坐标-sigmoid函数及其梯度sigmoid函数的梯度:-image2vector通常用于深度学习-np.reshape被广泛使用。保持矩阵/向量尺寸不变有助于我们消除许多
- 吴恩达机器学习—大规模机器学习
魏清宇
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行梯度下降的时候,还要反复求损失函数的偏导数,这样一来计算量更大。那么有没有简单的方法来应对大量的数据呢?我们可以采取随机抽样,比如,抽取1000个样本进行模型的构建。那么如何决定抽取多少样本呢?可以通过学习曲线获得,随着数据量的增加,无论是偏差和误差,都会趋向于
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt