tensorflow编程一些需要知道的 - 4

训练1024维特征的数据集合,multi-label, 转成多个1的onehot的label, 2个全连接。很直接的顺序编程,练习、便于理解
# Import your data
#from tensorflow.examples.tutorials.mnist import input_data


import os
import tensorflow as tf
from tensorflow import gfile
from tensorflow import logging
from tensorflow import flags
from tensorflow import app
import numpy as np
# Parameters
learning_rate = 0.001
training_epochs = 5
batch_size = 512
display_step = 2

# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 128 # 2nd layer number of features
n_input = 1024 #
n_classes = 4716 

# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])


# Create model
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    input_dim = len(x.get_shape()) - 1
    model_input = tf.nn.l2_normalize(x, input_dim)
    layer_1 = tf.add(tf.matmul(model_input, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)
    layer_2 = tf.nn.dropout(layer_2, 0.5)
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer

# Store layers weight & bias
weights = {
    'h1': tf.get_variable("wh1", shape=[n_input, n_hidden_1],
           initializer=tf.contrib.layers.xavier_initializer()),

    'h2': tf.get_variable("wh2", shape=[n_hidden_1, n_hidden_2],
           initializer=tf.contrib.layers.xavier_initializer()),

    'out': tf.get_variable("wout", shape=[n_hidden_2, n_classes],
           initializer=tf.contrib.layers.xavier_initializer())
}
biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'b2': tf.Variable(tf.zeros([n_hidden_2])),
    'out': tf.Variable(tf.zeros([n_classes]))
}


# Construct model
pred = multilayer_perceptron(x, weights, biases)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Initializing the variables
init = tf.global_variables_initializer()
video_level_record_path="./video_level/train/" #NEED CHANGE
saver = tf.train.Saver()
summ = tf.Summary()
# Launch the graph
checkpoint_dir="./ckp" #NEED CHANGE
with tf.Session() as sess:
    writer = tf.summary.FileWriter(checkpoint_dir, sess.graph)
    if os.path.exists (checkpoint_dir):
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        saver.restore(sess, ckpt.model_checkpoint_path) 
    else: 
        sess.run(init)
    # Training cycle
    avg_cost = 0.
    i = 0
    total = 0
    batches = 0
    binary_labels_list = np.array([])
    data_list = np.array([])
    for epoch in range(training_epochs):
        for video_level_record in os.listdir(video_level_record_path):
            video_level_record = os.path.join (video_level_record_path, video_level_record)
            for example in tf.python_io.tf_record_iterator(video_level_record):
                if  i < batch_size:
                    tf_example = tf.train.Example.FromString(example)
                    #print (i, tf_example.features.feature['video_id'].bytes_list.value[0].decode(encoding='UTF-8'))
                    labels = tf_example.features.feature['labels'].int64_list.value
                    binary_labels = np.asarray([0] * n_classes)
		    for label in labels:
		        binary_labels[label] = 1
		    binary_labels = binary_labels.reshape(1, n_classes)
		    binary_labels = np.asarray(binary_labels)
		    data = np.asarray(tf_example.features.feature['mean_rgb'].float_list.value).reshape(1, n_input)
		    if len(binary_labels_list) == 0: 
		        binary_labels_list = binary_labels
		    binary_labels_list = np.vstack([binary_labels_list, binary_labels])
		    if len(data_list) == 0:
		        data_list = data
		    data_list = np.vstack([data_list, data])
		    i += 1
		    total += 1
		else:
		    if len(data_list) > 0 and len(binary_labels_list) > 0:
                        # Run optimization op (backprop) and cost op (to get loss value)
                        _, c = sess.run([optimizer, cost], feed_dict={x: data_list,
                                                      y: binary_labels_list})
                        avg_cost = c 
		    i = 0
		    binary_labels_list = np.array([])
		    data_list = np.array([])
		    batches += 1
                    if batches % display_step == 0:
                        print("Epoch:", '%04d' % (epoch+1), \
                              "Iter:", "%d" % (batches), \
                              "cost=", str(avg_cost))
                        summ.value.add(tag="cost", simple_value = avg_cost)
                        writer.add_summary (summ, batches)
                    if batches % 100 == 0:
                        save_path = saver.save(sess, checkpoint_dir + "/model.ckpt-" + str(batches))
                        print "saved", save_path
    print("Optimization Finished!")

    # Test model
    #correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # Calculate accuracy
    #accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    #print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

你可能感兴趣的:(深度学习)