VINS-Mono代码阅读笔记(三):vins_estimator中main函数分析

在VINS-Mono代码阅读笔记(一):从Euroc数据集的运行开始 中我们已经初步知道了vins_estimator中订阅和发布的topic,那么,在研究vins_estimator模块的代码时,一个很有用的思路就是关注接收到的每一个topic是怎么进行处理的,发送的topic的message信息有哪些。把这些搞清楚了,这个模块的主要工作也就搞清楚了。

1.vins_estimator的main函数

main函数代码路径为:src/VINS-Mono/vins_estimator/src/estimator_node.cpp,该函数代码如下:

int main(int argc, char **argv)
{
    //1.相关初始化
    ros::init(argc, argv, "vins_estimator");
    ros::NodeHandle n("~");
    ros::console::set_logger_level(ROSCONSOLE_DEFAULT_NAME, ros::console::levels::Info);
    //2.参数读取
    readParameters(n);
    //3.设置状态估计器的参数
    estimator.setParameter();
#ifdef EIGEN_DONT_PARALLELIZE
    ROS_DEBUG("EIGEN_DONT_PARALLELIZE");
#endif
    ROS_WARN("waiting for image and imu...");
    //4.注册发布器
    registerPub(n);
    /**
     * ros::TransportHints().tcpNoDelay()允许指定hints到roscpp的传输层,这里使用没延迟的TCP。其实也可以使用UPD传输,
    */
    //5.订阅topic
    ros::Subscriber sub_imu = n.subscribe(IMU_TOPIC, 2000, imu_callback, ros::TransportHints().tcpNoDelay());
    ros::Subscriber sub_image = n.subscribe("/feature_tracker/feature", 2000, feature_callback);
    ros::Subscriber sub_restart = n.subscribe("/feature_tracker/restart", 2000, restart_callback);
    ros::Subscriber sub_relo_points = n.subscribe("/pose_graph/match_points", 2000, relocalization_callback);
    //6.创建process线程,这个是主线程
    std::thread measurement_process{process};
    ros::spin();

    return 0;
}

可以看出,上边main函数的代码从逻辑功能上可以分为六部分:ROS相关初始化、参数读取、estimator中相关参数的设置、topic发布器注册、订阅topic、创建measurement_process线程。

下面看看以上代码中都具体做了什么。

2.estimator中的参数读取

main函数中readParameters函数中读取了配置文件中设置的相关参数。这个配置文件路径为:src/VINS-Mono/config/euroc/euroc_config.yaml,所以可以直接打开该文件来查看各个参数的值。

//读取参数
void readParameters(ros::NodeHandle &n)
{
    std::string config_file;
    config_file = readParam(n, "config_file");
    cv::FileStorage fsSettings(config_file, cv::FileStorage::READ);
    if(!fsSettings.isOpened())
    {
        std::cerr << "ERROR: Wrong path to settings" << std::endl;
    }

    fsSettings["imu_topic"] >> IMU_TOPIC;

    SOLVER_TIME = fsSettings["max_solver_time"];
    NUM_ITERATIONS = fsSettings["max_num_iterations"];
    MIN_PARALLAX = fsSettings["keyframe_parallax"];//10
    MIN_PARALLAX = MIN_PARALLAX / FOCAL_LENGTH;//最小视差=最小视差/焦距=10.0/460.0

    std::string OUTPUT_PATH;
    fsSettings["output_path"] >> OUTPUT_PATH;
    VINS_RESULT_PATH = OUTPUT_PATH + "/vins_result_no_loop.csv";
    std::cout << "result path " << VINS_RESULT_PATH << std::endl;

    // create folder if not exists
    //创建输出目录:output_path: "/home/shaozu/output/"
    FileSystemHelper::createDirectoryIfNotExists(OUTPUT_PATH.c_str());

    std::ofstream fout(VINS_RESULT_PATH, std::ios::out);
    fout.close();

    ACC_N = fsSettings["acc_n"];
    ACC_W = fsSettings["acc_w"];
    GYR_N = fsSettings["gyr_n"];
    GYR_W = fsSettings["gyr_w"];
    G.z() = fsSettings["g_norm"];
    ROW = fsSettings["image_height"];
    COL = fsSettings["image_width"];
    ROS_INFO("ROW: %f COL: %f ", ROW, COL);
    //IMU和camera之间的外参
    ESTIMATE_EXTRINSIC = fsSettings["estimate_extrinsic"];
    if (ESTIMATE_EXTRINSIC == 2)
    {
        ROS_WARN("have no prior about extrinsic param, calibrate extrinsic param");
        RIC.push_back(Eigen::Matrix3d::Identity());
        TIC.push_back(Eigen::Vector3d::Zero());
        EX_CALIB_RESULT_PATH = OUTPUT_PATH + "/extrinsic_parameter.csv";

    }
    else 
    {
        if ( ESTIMATE_EXTRINSIC == 1)
        {
            ROS_WARN(" Optimize extrinsic param around initial guess!");
            EX_CALIB_RESULT_PATH = OUTPUT_PATH + "/extrinsic_parameter.csv";
        }
        if (ESTIMATE_EXTRINSIC == 0)
            ROS_WARN(" fix extrinsic param ");

        cv::Mat cv_R, cv_T;
        fsSettings["extrinsicRotation"] >> cv_R;
        fsSettings["extrinsicTranslation"] >> cv_T;
        Eigen::Matrix3d eigen_R;
        Eigen::Vector3d eigen_T;
        cv::cv2eigen(cv_R, eigen_R);
        cv::cv2eigen(cv_T, eigen_T);
        Eigen::Quaterniond Q(eigen_R);
        eigen_R = Q.normalized();
        RIC.push_back(eigen_R);
        TIC.push_back(eigen_T);
        ROS_INFO_STREAM("Extrinsic_R : " << std::endl << RIC[0]);
        ROS_INFO_STREAM("Extrinsic_T : " << std::endl << TIC[0].transpose());
        
    } 

    INIT_DEPTH = 5.0;
    BIAS_ACC_THRESHOLD = 0.1;
    BIAS_GYR_THRESHOLD = 0.1;
    //获取TD,图像和IMU数据在时间上的偏移量,这里配置文件中为0.0
    TD = fsSettings["td"];
    ESTIMATE_TD = fsSettings["estimate_td"];
    if (ESTIMATE_TD)
        ROS_INFO_STREAM("Unsynchronized sensors, online estimate time offset, initial td: " << TD);
    else
        ROS_INFO_STREAM("Synchronized sensors, fix time offset: " << TD);

    ROLLING_SHUTTER = fsSettings["rolling_shutter"];
    if (ROLLING_SHUTTER)
    {
        TR = fsSettings["rolling_shutter_tr"];
        ROS_INFO_STREAM("rolling shutter camera, read out time per line: " << TR);
    }
    else
    {
        TR = 0;
    }
    
    fsSettings.release();
}

3.estimator中的参数设置

setParameter代码如下:

void Estimator::setParameter()
{
    //单目的情况下相机个数为1,所以NUM_OF_CAN值为1
    for (int i = 0; i < NUM_OF_CAM; i++)
    {
        tic[i] = TIC[i];
        ric[i] = RIC[i];
    }
    f_manager.setRic(ric);
    //FOCAL_LENGTH=460
    ProjectionFactor::sqrt_info = FOCAL_LENGTH / 1.5 * Matrix2d::Identity();
    ProjectionTdFactor::sqrt_info = FOCAL_LENGTH / 1.5 * Matrix2d::Identity();
    // 配置文件中td的解释:initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)
    td = TD;
}

4.创建estimator中的topic发布器

registerPub函数代码如下,estimator中要发布多少个topic这里就创建多少个topic发布器。

void registerPub(ros::NodeHandle &n)
{
    pub_latest_odometry = n.advertise("imu_propagate", 1000);
    pub_path = n.advertise("path", 1000);
    pub_relo_path = n.advertise("relocalization_path", 1000);
    pub_odometry = n.advertise("odometry", 1000);
    pub_point_cloud = n.advertise("point_cloud", 1000);
    pub_margin_cloud = n.advertise("history_cloud", 1000);
    pub_key_poses = n.advertise("key_poses", 1000);
    pub_camera_pose = n.advertise("camera_pose", 1000);
    pub_camera_pose_visual = n.advertise("camera_pose_visual", 1000);
    pub_keyframe_pose = n.advertise("keyframe_pose", 1000);
    pub_keyframe_point = n.advertise("keyframe_point", 1000);
    pub_extrinsic = n.advertise("extrinsic", 1000);
    pub_relo_relative_pose=  n.advertise("relo_relative_pose", 1000);
    //可视化的相关设置
    cameraposevisual.setScale(1);
    cameraposevisual.setLineWidth(0.05);
    keyframebasevisual.setScale(0.1);
    keyframebasevisual.setLineWidth(0.01);
}

5.订阅topic,并处理相关消息

1)订阅IMU消息

ros::Subscriber sub_imu = n.subscribe(IMU_TOPIC, 2000, imu_callback, ros::TransportHints().tcpNoDelay());

imu订阅的回调函数为imu_callback,在imu_callback函数中对接收到的imu消息进行处理。

//imu回调函数,将imu_msg存入imu_buf,递推IMU的PQV并发布"imu_propagate”
void imu_callback(const sensor_msgs::ImuConstPtr &imu_msg)
{
    //用时间戳来判断IMU message是否乱序
    if (imu_msg->header.stamp.toSec() <= last_imu_t)
    {
        ROS_WARN("imu message in disorder!");
        return;
    }
    last_imu_t = imu_msg->header.stamp.toSec();
    //在修改多个线程共享的变量的时候要进行上锁,防止多个线程同时访问该变量
    m_buf.lock();
    imu_buf.push(imu_msg);//新来的imu_msg放入imu_buf队列当中
    m_buf.unlock();

    //这里调用notify_one唤醒的是process线程
    con.notify_one();

    last_imu_t = imu_msg->header.stamp.toSec();

    {
        std::lock_guard lg(m_state);
        //预测函数,这里推算的是tmp_P,tmp_Q,tmp_V
        predict(imu_msg);
        std_msgs::Header header = imu_msg->header;
        header.frame_id = "world";
        //发布imu_propagate topic
        if (estimator.solver_flag == Estimator::SolverFlag::NON_LINEAR)
            pubLatestOdometry(tmp_P, tmp_Q, tmp_V, header);
    }
}

imu_callback中调用的predict函数代码如下:

//从IMU测量值imu_msg和上一个PVQ递推得到当前PVQ
void predict(const sensor_msgs::ImuConstPtr &imu_msg)
{
    double t = imu_msg->header.stamp.toSec();
    //init_imu初始化的值为1
    if (init_imu)
    {
        latest_time = t;
        init_imu = 0;
        return;
    }
    //计算当前imu_msg距离上一个imu_msg的时间间隔
    double dt = t - latest_time;
    latest_time = t;
    //获取x,y,z三个方向上的线加速度
    double dx = imu_msg->linear_acceleration.x;
    double dy = imu_msg->linear_acceleration.y;
    double dz = imu_msg->linear_acceleration.z;
    Eigen::Vector3d linear_acceleration{dx, dy, dz};
    //获取x,y,z三个方向上的角速度
    double rx = imu_msg->angular_velocity.x;
    double ry = imu_msg->angular_velocity.y;
    double rz = imu_msg->angular_velocity.z;
    Eigen::Vector3d angular_velocity{rx, ry, rz};

    Eigen::Vector3d un_acc_0 = tmp_Q * (acc_0 - tmp_Ba) - estimator.g;

    Eigen::Vector3d un_gyr = 0.5 * (gyr_0 + angular_velocity) - tmp_Bg;
    tmp_Q = tmp_Q * Utility::deltaQ(un_gyr * dt);

    Eigen::Vector3d un_acc_1 = tmp_Q * (linear_acceleration - tmp_Ba) - estimator.g;

    Eigen::Vector3d un_acc = 0.5 * (un_acc_0 + un_acc_1);
    //利用位移公式计算位移
    tmp_P = tmp_P + dt * tmp_V + 0.5 * dt * dt * un_acc;
    //加速度情况下速度计算
    tmp_V = tmp_V + dt * un_acc;
    //线加速度
    acc_0 = linear_acceleration;
    //角速度
    gyr_0 = angular_velocity;
}

imu_callback中调用的pubLatestOdometry函数如下,该函数中主要是发布predict中计算出来的PVQ信息。

/**
 * 发布最新的由imu直接递推得到的PQV
*/
void pubLatestOdometry(const Eigen::Vector3d &P, const Eigen::Quaterniond &Q, const Eigen::Vector3d &V, const std_msgs::Header &header)
{
    Eigen::Quaterniond quadrotor_Q = Q ;

    nav_msgs::Odometry odometry;
    odometry.header = header;
    odometry.header.frame_id = "world";
    odometry.pose.pose.position.x = P.x();
    odometry.pose.pose.position.y = P.y();
    odometry.pose.pose.position.z = P.z();
    odometry.pose.pose.orientation.x = quadrotor_Q.x();
    odometry.pose.pose.orientation.y = quadrotor_Q.y();
    odometry.pose.pose.orientation.z = quadrotor_Q.z();
    odometry.pose.pose.orientation.w = quadrotor_Q.w();
    odometry.twist.twist.linear.x = V.x();
    odometry.twist.twist.linear.y = V.y();
    odometry.twist.twist.linear.z = V.z();
    pub_latest_odometry.publish(odometry);
}

2)订阅feature消息

ros::Subscriber sub_image = n.subscribe("/feature_tracker/feature", 2000, feature_callback);

回调函数feature_callback函数代码如下:

//feature回调函数,将feature_msg放入feature_buf
void feature_callback(const sensor_msgs::PointCloudConstPtr &feature_msg)
{
    //如果是第一个检测到的特征则直接忽略掉,这里直接return了二没有将该feature加入到feature_buf中
    if (!init_feature)
    {
        //skip the first detected feature, which doesn't contain optical flow speed
        init_feature = 1;
        return;
    }
    m_buf.lock();
    feature_buf.push(feature_msg);
    m_buf.unlock();
    //唤醒process线程,处理feature_buf中的
    con.notify_one();
}

3)订阅restart消息

ros::Subscriber sub_restart = n.subscribe("/feature_tracker/restart", 2000, restart_callback);

回调函数restart_callback函数代码如下,这里的restart消息处理中主要是将estimator中的相关参数和存储数据的buf清除掉。

//restart回调函数,收到restart消息时清空feature_buf和imu_buf,估计器重置,时间重置
void restart_callback(const std_msgs::BoolConstPtr &restart_msg)
{
    if (restart_msg->data == true)
    {
        ROS_WARN("restart the estimator!");
        //重启estimator的时候需要先上锁将feature_buf、imu_buf都清空,
        m_buf.lock();
        while(!feature_buf.empty())
            feature_buf.pop();
        while(!imu_buf.empty())
            imu_buf.pop();
        m_buf.unlock();
        m_estimator.lock();
        estimator.clearState();
        estimator.setParameter();
        m_estimator.unlock();
        current_time = -1;
        last_imu_t = 0;
    }
    return;
}

4)订阅match_points消息

ros::Subscriber sub_relo_points = n.subscribe("/pose_graph/match_points", 2000, relocalization_callback);

回调函数relocalization_callback代码如下,该函数对于接收到的匹配的地图点信息存放在relo_buf中,为后边的重定位提供数据支持。

//relocalization回调函数,将points_msg放入relo_buf
void relocalization_callback(const sensor_msgs::PointCloudConstPtr &points_msg)
{
    //printf("relocalization callback! \n");
    m_buf.lock();
    relo_buf.push(points_msg);
    m_buf.unlock();
}

6.创建measurement_process线程

std::thread measurement_process{process};

在这里创建了measurement_process线程,线程的入口函数为process,这个线程也就运行了起来。该线程为estimator中最重要的逻辑处理函数,IMU预计分和图像处理等重要的操作都是在该线程中实现的。

由于process函数中的内容太多了,对process的代码分析放到下一篇博客中进行介绍。

你可能感兴趣的:(SLAM)