GEO难搞的分组信息

花花写于2019-10-4

GEO踩坑进行时,高级课程上线指日可待。

GEO难搞的分组信息

前面提到过:有的GEO数据分组信息找起来比较麻烦

这是GSE58979的pdata信息,为了简化,直接读取文件吧。

library(tidyr)
pd = read.table("pd.txt")
pd$title
##  [1] "FN52-NASHF52"      "FN55-NASHF55"      "FN69-NASHF69"     
##  [4] "FN71-NASHF71"      "FN76-NASHF76-DupA" "FN77-NASHF77"     
##  [7] "FN56-NASHF56"      "FN57-NASHF57"      "FN73-NASHF73"     
## [10] "FN79-NASHF79"      "FN53-NASHF53"      "FN61-NASHF61-DupA"
## [13] "FN64-NASHF64"      "FN65-NASHF65"      "FN70-NASHF70"     
## [16] "SF52-NASHF52"      "FN76-NASHF76-DupB" "SF56-NASHF56"     
## [19] "V096-VIS96"        "SF53-NASHF53"      "FN61-NASHF61-DupB"
## [22] "C147-CUT147"       "V147-VIS147"       "SF55-NASHF55"     
## [25] "V043-VIS43"        "SF57-NASHF57"      "V178-VIS178"      
## [28] "SF65-NASHF65"      "V119-VIS119"       "C152-CUT152"      
## [31] "V152-VIS152"       "SF69-NASHF69"      "V095-VIS95"       
## [34] "SF73-NASHF73"      "V210-VIS210"       "SF70-NASHF70"     
## [37] "V122-VIS122"       "C198-CUT198"       "V170-VIS170"      
## [40] "C072-CUT72"        "V190-VIS190"       "C073-CUT73"       
## [43] "C024-CUT24"        "C205-CUT205"       "V205-VIS205"      
## [46] "C095-CUT95"        "C096-CUT96"        "C119-CUT119"      
## [49] "C214-CUT214"       "V214-VIS214"       "C164-CUT164"      
## [52] "C121-CUT121"       "C177-CUT177"

目的是生成形如A,A,A,B,B,B这样的向量,A、B是组名,在后续分析中会用到。

结合文章看了一下,pd里面没有可用的分组,需要从title这一列提取。我知道有一组名叫NASH。

方法一:拆分列+删除数字

tidyr::separate可以分列,分隔符用“-”即可

zz=separate(pd,title,into = c("a","b"),"-")
## Warning: Expected 2 pieces. Additional pieces discarded in 4 rows [5, 12,
## 17, 21].
head(zz)[,1:3]
##               a       b geo_accession
## GSM1423267 FN52 NASHF52    GSM1423267
## GSM1423268 FN55 NASHF55    GSM1423268
## GSM1423269 FN69 NASHF69    GSM1423269
## GSM1423270 FN71 NASHF71    GSM1423270
## GSM1423271 FN76 NASHF76    GSM1423271
## GSM1423272 FN77 NASHF77    GSM1423272

留下b列。F以及后面的数字,其实是病人的id,都删掉就行。

library(stringr)
gr = str_replace_all(zz$b,"F\\d\\d","") %>%
  str_replace_all("\\d","")
table(gr)
## gr
##  CUT NASH  VIS 
##   14   26   13

方法二: ifelse

gr2 = ifelse(str_detect(pd$title, "NASH"),
             "NASH",
             ifelse(str_detect(pd$title, "CUT"), "CUT", "VIS"))
table(gr2)
## gr2
##  CUT NASH  VIS 
##   14   26   13
identical(gr,gr2)
## [1] TRUE

如果方法二代码看不懂,回过去看:从前提到条件语句只知道if else

你可能感兴趣的:(GEO难搞的分组信息)