- 在低功耗MCU上实现人工智能和机器学习
电子科技圈
SiliconLabs人工智能机器学习嵌入式硬件经验分享科技物联网mcu
作者:SiliconLabs人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。这种集成化在可穿戴电子产品、智能家居设备和工业自动化等应用领域中,从AI/ML功能中获得的效益尤为显著。具备AI优化功能的
- 【Rust】——使用Drop Trait 运行清理代码和Rc<T> 引用计数智能指针
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录使用DropTrait运行清理代码通过std::mem::drop提早丢弃值
- Python机器学习库之scikit-llm使用详解
Rocky006
python开发语言
概要Pythonscikit-llm库是一个用于机器学习的强大工具,它基于scikit-learn库并扩展了一些机器学习算法和功能,可以帮助开发者更轻松地进行机器学习模型的训练和评估。安装可以使用pip工具来安装Pythonscikit-llm库:pip install scikit-llm安装完成后,就可以开始使用scikit-llm库进行机器学习任务了。特性支持多种机器学习算法,如线性回归、逻
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现关键词:深度学习、入侵检测、网络安全、机器学习、神经网络、特征提取、实时分析文章目录基于深度学习的入侵检测系统设计与实现1.背景介绍1.1网络安全的重要性1.2传统入侵检测系统的局限性1.3深度学习在安全领域的应用前景2.核心概念与联系2.1入侵检测系统(IDS)概述2.2深度学习基础2.3深度学习在入侵检测中的应用3.核心算法原理&具体操作步骤3.1算法原理概
- 【机器学习基础】第六课:线性回归
x-jeff
机器学习基础机器学习线性回归人工智能
【机器学习基础】系列博客为参考周志华老师的《机器学习》一书,自己所做的读书笔记。1.线性模型基本形式给定由ddd个属性描述的示例x=(x1;x2;...;xd)\mathbfx=(x_1;x_2;...;x_d)x=(x1;x2;...;xd),那么线性模型的基本形式可写为:f(x)=w1x1+w2x2+w3x3+...+wdxd+bf(\mathbfx)=w_1x_1+w_2x_2+w_3x_3
- 机器学习库
Welosthesightof
笔记
机器学习一個很棒的機器學習框架、庫和軟件的精選列表(按語言)。靈感來自於awesome-php。计算机视觉Scikit-Image-Python中图像处理算法的集合。Scikit-Opt-Python中的群智能(Python中的遗传算法、粒子群优化、模拟退火、蚁群算法、免疫算法、人工鱼群算法)SimpleCV-一个开源计算机视觉框架,可以访问多个高性能计算机视觉库,例如OpenCV。用Python
- 机器学习:入门方法与学习路径 (附资料)
weixin_34051201
人工智能javac/c++
◆◆◆1.引言也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而然点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。套用一下大神们对机器学习的定义,机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的
- 介绍 TensorFlow 的基本概念和使用场景。
AC使者
githubsqlite开发语言自然语言处理
TensorFlow是一个由Google开发的开源机器学习框架,旨在让开发者能够构建和训练各种深度学习模型。以下是TensorFlow的基本概念和使用场景:张量(Tensor):在TensorFlow中,数据以张量的形式表示,可以理解为多维数组。张量是TensorFlow的基本数据单位,常用于存储训练数据和模型的参数。计算图(ComputationalGraph):TensorFlow使用计算图来
- 人工智能训练师如何做文本数据标注?
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,文本数据标注是非常重要的一个环节。文本数据标注是对数据进行结构化、分类、分词、情感分析、命名实体识别(NER)等操作,为机器学习模型提供准确的输入。以下是常见的文本数据标注任务和对应的Python代码示例。1.文本分类标注文本分类标注是对文本数据进行分类的任务。通常我们会将文本数据标注为不同的类别,比如“体育”、“娱乐”、“政治”等。示例:假设我们有一组新闻文本,我们需要为其分配
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- 深入解析 Hydra 库:灵活强大的 Python 配置管理框架
萧鼎
python基础到进阶教程python开发语言
深入解析Hydra库:灵活强大的Python配置管理框架在机器学习、深度学习和复杂软件开发项目中,管理和维护大量的配置参数是一项具有挑战性的任务。传统的argparse、json或yaml方式虽然能管理部分配置,但随着项目规模的增长,手动管理配置文件变得越来越复杂。Hydra作为一个现代化的Python配置管理框架,提供了动态配置、层级合并、运行时修改等强大功能,使得配置管理更加灵活和高效。本文将
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 一文了解AI大模型相关知识点(含资料分享)
大模型研究院
人工智能机器学习自然语言处理深度学习语言模型大模型
前言,随着人工智能技术飞速发展,AI大模型在各行各业的应用日益广泛,是助力各行业提升产业智能化水平、优化业务流程等必不可少的推力,什么是AI大模型?AI大模型行业应用落地的背景?具体分为几类有哪些特点?现阶段AI大模型在落地过程中面临哪些挑战和可能的方案是什么?今天我们围绕以上几个点简单做个分享!一、AI大模型的定义和背景AI大模型指具有庞大规模和复杂计算结构的机器学习模型,这些模型通常由深度神经
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- Go 企业开发知识链
Wade_Crab
golang开发语言后端
Go企业级-全局篇Go企业级-全局篇,又名:Go企业级应用到底层开发(第4天)这个系列是准备做从go基础到Web开发,系统编程,云原生应用,网络编程,工具和脚本开发,机器学习,CGo编程,还有最后的编译器层级底层的分析,点上关注,方便每天阅读一键三连是我最大的动力。谢谢~~目录测试和调试Web开发跨平台Go企业中的常见组件生态Go企业流程1.测试和调试:概念:单元测试和集成测试:单元测试用于测试代
- 【Python】成功解决: OSError: [Errno 22] Invalid Argument
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决:OSError:[Errno22]InvalidArgument博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者
- (《机器学习》完整版系列)附录 ——3、复合函数梯度的链式法则(链的次序不可交换)
人工干智能
周志华【西瓜书】辅导《机器学习》算法机器学习线性代数
推导了复合函数梯度的链式法统一形式。首创了的链式记号,非常易记:分子右挪+分数约分,特别是它强调了链的表达次序,由于矩阵积没有交换律,故该链的次序不可交换。注:修正了一般教材中的错误次序(在标量时正确)链式法则在此基础上,我们讨论复合函数的链式法则(只讨论复合后为标量函数的情况,即zzz为标量)。1.当自变量为标量xxx时,梯度为标量:∂z∂x\frac{\partialz}{\partialx}
- 利用DeepSeek提升编程效率:全面指南
一小路一
DeepSeek使用服务器后端AI编程ai
利用DeepSeek提升编程效率:全面指南目录什么是DeepSeekDeepSeek的主要功能如何有效使用DeepSeekDeepSeekvs其他AI编程助手实际应用案例注意事项和最佳实践总结1.什么是DeepSeekDeepSeek是一个基于人工智能的编程助手,旨在帮助开发者提高编码效率和质量。它利用先进的自然语言处理和机器学习技术,为程序员提供智能代码补全、代码生成、错误检测等功能。2.Dee
- 从零开始玩转TensorFlow:小明的机器学习故事 1
山海青风
#机器学习机器学习tensorflow人工智能
1.引言故事简介小明是一个计算机专业的大三学生,近期在学校里接触到了机器学习。他在某次校园活动中发现,活动主办方总是难以准确预测学生的报名人数,导致准备的物料经常不够或浪费。于是,小明萌生了一个想法:能否通过一些历史数据,用机器学习的方式来预测每场活动的参与率?在老师的建议下,他选择了TensorFlow,一个流行且强大的深度学习框架,希望能将这个想法变成现实。2.开始TensorFlow的旅程场
- 从零开始玩转TensorFlow:小明的机器学习故事 2
山海青风
#机器学习机器学习tensorflow人工智能
你好,TensorFlow!——从零开始的第一个机器学习程序1.为什么要写这个“Hello,TensorFlow!”?无论学习什么新语言或新框架,“HelloWorld!”示例都能帮助我们快速确认开发环境是否就绪,并掌握最基本的使用方式。对于初学者来说,这种“可执行的最小示例”既能降低上手门槛,又能带来满满的成就感。在这里,我们就用TensorFlow2.x的即时执行模式,输出“Hello,Ten
- 知物由学 | AI网络安全实战:生成对抗网络
Hacker_Fuchen
人工智能web安全生成对抗网络
作者:BradHarris,安全研究员,Brad曾在公共和私营部门的网络和计算机安全领域工作过。他已经完成了从渗透测试到逆向工程到应用研究的所有工作,目前他是IBMX-Force的研究员。GANs是人工智能(AI)的最新思想之一。在我们深入讨论这个话题之前,让我们先来看看“对抗性”这个词的含义。在AI的原始应用中,这个词指的是用来欺骗评估神经网络或另一个机器学习模型的样本类型。随着机器学习在安全应
- 如何系统学习 MATLAB
热爱技术。
Matlab学习matlab信息可视化
引言MATLAB(MatrixLaboratory)是一种广泛应用于工程、科学和数学领域的高效编程工具。它不仅在矩阵运算、数据分析和图形可视化等方面表现出色,还在信号处理、控制系统设计以及机器学习中占有重要地位。对于初学者和有一定编程经验的学习者来说,系统学习MATLAB可以帮助你在科研和工程项目中取得更大的进展。本文将为你提供一套系统的学习MATLAB的方法和资源,帮助你从零开始掌握这门强大的工
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 大一的你如何入门TensorFlow
eso1983
tensorflow人工智能python
刚刚迈入大学的你,对计算机编程还比较陌生。对于现在主流人工智能技术架构TensorFlow的学习,需要循序渐进。入门TensorFlow编程需要结合基础知识学习和实践操作。首先可能需要巩固Python基础,特别是NumPy和数据处理相关的库,因为TensorFlow很多操作和这些库有关联。接下来,可能需要了解机器学习的基本概念。TensorFlow毕竟是一个机器学习框架,如果没有基本的理解,直接上
- ARCore:ARCore的点云与深度API应用_2024-07-25_20-37-55.Tex
chenjj4003
游戏开发1024程序员节substancepainter贴图android数据库
ARCore:ARCore的点云与深度API应用ARCore简介ARCore的基本概念ARCore是Google开发的一个增强现实(AR)平台,旨在为移动设备提供高精度的AR体验。它通过使用设备的摄像头、传感器和机器学习技术,能够在没有外部标记的情况下,实现对现实世界的理解和交互。ARCore支持Android和iOS设备,允许开发者创建沉浸式的AR应用,无需额外硬件支持。ARCore的核心功能包
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- NVIDIA B200:高性能 AI 计算的未来
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能nvidiab200
简介对于一直关注人工智能和机器学习快速发展的人来说,新硬件的发布总是备受期待。每一代新处理器和加速器都有可能极大地改变我们开发和部署大规模机器学习模型的方式。NVIDIA长期处于人工智能硬件开发的最前沿,它再次凭借由Blackwell架构驱动的B200提高了标准。最近的MLPerf基准测试提供了B200的首批可靠数据,结果非常出色。在Llama270B型号上运行推理时,B200每秒可处理11,26
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">