tensorflow面试题

1、手写逻辑回归

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
#使用numpy生成200个随机点
x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise=np.random.normal(0,0.02,x_data.shape)
y_data=np.square(x_data)+noise
 
#定义两个placeholder存放输入数据
x=tf.placeholder(tf.float32,[None,1])
y=tf.placeholder(tf.float32,[None,1])
 
#定义神经网络中间层
Weights_L1=tf.Variable(tf.random_normal([1,10]))
biases_L1=tf.Variable(tf.zeros([1,10]))    #加入偏置项
Wx_plus_b_L1=tf.matmul(x,Weights_L1)+biases_L1
L1=tf.nn.tanh(Wx_plus_b_L1)   #加入激活函数
 
#定义神经网络输出层
Weights_L2=tf.Variable(tf.random_normal([10,1]))
biases_L2=tf.Variable(tf.zeros([1,1]))  #加入偏置项
Wx_plus_b_L2=tf.matmul(L1,Weights_L2)+biases_L2
prediction=tf.nn.tanh(Wx_plus_b_L2)   #加入激活函数
 
#定义损失函数(均方差函数)
loss=tf.reduce_mean(tf.square(y-prediction))
#定义反向传播算法(使用梯度下降算法训练)
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
 
with tf.Session() as sess:
    #变量初始化
    sess.run(tf.global_variables_initializer())
    #训练2000次
    for i in range(2000):
        sess.run(train_step,feed_dict={x:x_data,y:y_data})
 
    #获得预测值
    prediction_value=sess.run(prediction,feed_dict={x:x_data})
 
    #画图
    plt.figure()
    plt.scatter(x_data,y_data)   #散点是真实值
    plt.plot(x_data,prediction_value,'r-',lw=5)   #曲线是预测值
    plt.show()

2、请简要介绍下Tensorflow的计算图。(阿里)

3、tensorflow如何实现并行,梯度更新是同步还是异步,同步异步的优缺点

https://blog.csdn.net/weixin_31866177/article/details/87974664

4、tensorflow 2.0 和 1.X的区别

主要的变化如下:

  • API 整理

在 TensorFlow 2.0 中,有许多 1.X 的 API 被删除或移动 了。也有部分 1.X 的 API 被 2.0 版本的等价 API 所替代:tf.summary,tf.keras.metrics 和 tf.keras.optimizers。自动应用这些重命名,最简单的方法是使用 TensorFlow 2.0 升级脚本。

  • Eager execution

TensorFlow 1.X 要求用户通过调用 tf.* API 手动的将抽象语法树(图)拼接在一起。然后,它要求用户将一组输出张量和输入张量传递给 session.run() 调用,来手动编译抽象语法树。相比之下,TensorFlow 2.0 executes eagerly(如正常使用 Python 一样)在 2.0 的版本中,其 graphs(抽象语法树)和 sessions 在实现的细节上应该是一样的。

5、其他深度学习框架对比

https://blog.csdn.net/yhily2008/article/details/79176745

你可能感兴趣的:(tensorflow)