Python-pandas的fillna()方法-填充空值

0.摘要

pandas中fillna()方法,能够使用指定的方法填充NA/NaN值。

 

1.函数详解

函数形式:fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

参数:

value:用于填充的空值的值。

method: {'backfill', 'bfill', 'pad', 'ffill', None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。

axis:轴。0或'index',表示按行删除;1或'columns',表示按列删除。

inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。

limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)

downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。

 

2.示例

import numpy as np
import pandas as pd

a = np.arange(100,dtype=float).reshape((10,10))
for i in range(len(a)):
    a[i,:i] = np.nan
a[6,0] = 100.0

d = pd.DataFrame(data=a)
print(d)

Python-pandas的fillna()方法-填充空值_第1张图片

# 用0填补空值
print(d.fillna(value=0))

 Python-pandas的fillna()方法-填充空值_第2张图片

# 用前一行的值填补空值
print(d.fillna(method='pad',axis=0))

Python-pandas的fillna()方法-填充空值_第3张图片 

# 用后一列的值填补空值
print(d.fillna(method='backfill', axis=1))

Python-pandas的fillna()方法-填充空值_第4张图片

# 连续空值,最多填补3个
print(d.fillna(method='ffill',axis=0, limit=3))

Python-pandas的fillna()方法-填充空值_第5张图片

# 每条轴上,最多填补3个
print(d.fillna(value=-1,axis=0, limit=3))

Python-pandas的fillna()方法-填充空值_第6张图片

 

 

你可能感兴趣的:(Python-pandas的fillna()方法-填充空值)