C语言
#include "opencv2/core/core.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
inline float gamma(float x)
{
return x > 0.04045 ? pow((x + 0.055f) / 1.055f, 2.4f) : x / 12.92;
};
void RGBToLab(unsigned char R, unsigned char G, unsigned char B,
float *L, float *a, float *b)
{
float Br = gamma(B / 255.0f);
float Gr = gamma(G / 255.0f);
float Rr = gamma(R / 255.0f);
double X = 0.412453*Rr + 0.357580*Gr + 0.180423*Br;
double Y = 0.212671*Rr + 0.715160*Gr + 0.072169*Br;
double Z = 0.019334*Rr + 0.119193*Gr + 0.950227*Br;
X /= 0.95047;
Y /= 1.0;
Z /= 1.08883;
float FX = X > 0.008856f ? pow(X, 1.0f / 3.0f) : (7.787f * X + 0.137931f);
float FY = Y > 0.008856f ? pow(Y, 1.0f / 3.0f) : (7.787f * Y + 0.137931f);
float FZ = Z > 0.008856f ? pow(Z, 1.0f / 3.0f) : (7.787f * Z + 0.137931f);
*L = 116.0f * FY - 16.0f;
*a = 500.0f * (FX - FY);
*b = 200.0f * (FY - FZ);
}
int main(int argc, const char ** argv)
{
Mat img = imread("E:\\Self\\BackGround\\test.jpeg");
int ichannels = img.channels();
int irows = img.rows;
int icols = img.cols;
int gap = irows * icols;
FILE * out;
out = fopen("E:\\track\\C_Lab.txt", "a");
unsigned char B, G, R;
float L, a, b;
for (int nrow = 0; nrow < irows; nrow++)
{
uchar * data = img.ptr(nrow);
for (int ncol = 0; ncol < icols; ncol++)
{
B = img.at(nrow, ncol)[0];
G = img.at(nrow, ncol)[1];
R = img.at(nrow, ncol)[2];
RGBToLab(R, G, B, &L, &a, &b);
fprintf(out, "%f %f %f\n", L, a, b);
}
}
fclose(out);
}
Python
from skimage import color
import numpy as np
import cv2
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]])
'''
正常来说,L, a, b 每个取 x,y,z的分量和应该为1,但这里不为1,所以就有一个除以的操作;
(0.95047, 1.0, 1.08883) 就是分别对应L, a, b的和;【不完全是和,但为了和接口一致。。。】
接下来三行就是处理函数
f(t) =
t^(1./3.), if t > (6/29)^3
1./3. * (29./6.)^2 * t + 4./29., otherwise
'''
def xyz2lab(xyz):
#arr = xyz / np.array([0.950456, 1.0, 1.088754])
arr = xyz / np.array([0.95047, 1., 1.08883])
mask = arr > 0.008856
arr[mask] = np.power(arr[mask], 1./3.)
arr[~mask] = 7.787 * arr[~mask] + 4./29.
x, y, z = arr[..., 0], arr[..., 1], arr[..., 2]
L = (116. * y) - 16
a = 500.0 * (x - y)
b = 200.0 * (y - z)
return np.concatenate([x[..., np.newaxis] for x in [L, a, b]], axis = -1)
'''
中间的处理,是用来对图像进行非线性色调标记的
目的是提高图像对比度。
这个函数不是唯一的。
'''
def rgb2xyz(rgb):
arr = np.float64(rgb/255.0)
mask = arr > 0.04045
arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4)
arr[~mask] /= 12.92
return np.dot(arr, xyz_from_rgb.T)
def rgb2lab(rgb):
return xyz2lab(rgb2xyz(rgb))
if __name__ == '__main__':
im = cv2.imread('E:\\Self\\BackGround\\test.jpeg')
im_system = color.rgb2lab(im[..., ::-1])
im_self = rgb2lab(im[..., ::-1])