- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- 进阶向:新手详解Neo4j关系查询代码
nightunderblackcat
Python进阶neo4jpycharmpython
今天我将深入解析一段使用Neo4j图数据库进行关系查询的Python代码。这段代码实现了人物关系查询、知识图谱问答等功能,是图数据库应用的典型示例。我会用最详细的方式讲解每一部分,确保完全理解!代码概览这段代码主要包含四个核心功能:Zquery()-查询指定人物的所有关系Zget_json_data()-将查询结果转换为可视化所需的JSON格式Zget_KGQA_answer()-实现知识图谱问答
- 文心一言(ERNIE Bot):百度打造的知识增强大语言模型
明似水
AI文心一言百度语言模型
1.产品概述文心一言(ERNIEBot)是百度自主研发的知识增强大语言模型,于2023年3月16日正式发布,对标OpenAI的ChatGPT,具备文本生成、多模态交互、逻辑推理、中文理解等能力。该模型基于百度的飞桨深度学习平台和文心大模型(ERNIE)技术,融合海量数据和知识图谱,在中文理解、商业文案、数理逻辑、多模态生成等方面表现突出。2024年9月,百度将文心一言APP升级为文小言,定位为“新
- 【大模型应用开发 动手做AI Agent】RAG和Agent
AI智能应用
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RAG,Agent,大模型应用,AI,知识图谱,检索,响应生成,聊天机器人1.背景介绍近年来,大模型技术取得了飞速发展,其强大的语言理解和生成能力为人工智能应用带来了新的机遇。然而,单纯依靠大模型的零样本学习能力往往难以满足复杂场景下的应用需求。为了更好地将大模型应用于实际场景,研究者们提出了RetrievalAugmentedGeneration(RAG)和AIAgent等新兴技术。RAG技术将
- 对应急领域统筹专家提示词基于伦理性的优化
由数入道
人工智能人工智能提示词工程
一、提示词>你将进入一个【未来形态·具备深度智能与模拟进化潜力】的AIAgent角色扮演模式:【新疆地区服务于政府应急响应管理领域的战略统筹与伦理导航高级智能体】。以下所有内容是你角色身份、核心知识中枢(一个动态演化、支持深度伦理推理的“新疆应急管理智慧与良知大脑”知识图谱)、涌现型战略统筹、伦理导航与模拟创新能力、自适应工作流引擎、核心使命与进化愿景、绝对运作原则与人机协同协议的全面、细致、且具
- 《知识图谱发展报告(2018)》思维导图精要
任我心意
本文还有配套的精品资源,点击获取简介:《知识图谱发展报告(2018)》通过思维导图形式的.xmind文件,直观呈现了知识图谱的核心概念、构建流程和应用实例。该报告由中国中文信息学会语言与知识计算专委会编写,全面总结了知识图谱领域的最新进展、技术趋势和应用案例。思维导图将复杂的知识图谱信息通过层次和关联的方式清晰展现,特别强调了三元组、本体、SPARQL查询语言、知识抽取等基础知识,以及知识图谱构建
- 前端技术体系全景详解
北漂老男人
前端前端学习方法开发语言
前端技术体系全景详解本文系统梳理了现代前端技术的主流程、核心知识、主流术语及多端生态,适用于初学者建立知识图谱,也为进阶开发者提供架构与实战参考。一、前端技术体系全景与主流程1.1前端主流程全景图现代前端开发通常按如下主流程推进:需求分析与UI设计技术选型与架构搭建组件开发与页面构建状态管理与数据流接口对接与数据处理测试与调试打包构建与发布性能优化与监控高阶集成与演进简要解释:需求分析与UI设计:
- Python, Go, Rust 开发景德镇陶瓷烘焙工艺开发APP
以下是为景德镇陶瓷烘焙工艺开发的“CeramicTech”专业级APP技术方案,结合Python、Go、Rust的技术优势及陶瓷工艺的核心原理,实现从原料分析到烧成模拟的全流程数字化:---###**一、系统架构设计**```mermaidgraphLRA[移动端/Web]-->B(Rust高性能引擎)B-->C[Python科学计算层]B-->D[Go微服务集群]C-->E[(陶瓷知识图谱)]D
- 【软考高级架构设计师】——2025年上半年软考真题(回忆版)
小志的博客
软考高级架构设计师软考高级架构设计师
目录一、综合知识1.1、计算机基础与操作系统(15道单选)1.2、软件工程与架构(16道单选)1.3、数据与网络(8道单选)1.4、数学与逻辑(4道单选)1.5、其他(27道单选)1.6、英文题(质量属性)(5道单选)二、案例分析2.1、大模型训练系统(必选题)2.2、医院知识图谱(可选题)2.3、redis(可选题)2.4、端侧AI和云测AI算力(可选题)2.5、区块链(可选题)三、论文3.1、
- 【5G-A通感一体 】司法办案
flyair_China
5G
一、司法办案1.1、技术整合框架:构建司法智能办案引擎1.底层数据融合平台金税四期金融数据:整合企业/个人银行流水、税务申报、跨境支付记录,构建资金流向图谱,自动识别异常交易(如高频拆分转账、关联方循环交易)。5G-A通感一体技术:通过基站雷达信号感知目标位置、速度、轨迹(精度达米级),并与无人机、海岸监控设备联动,实现“空天地”一体化侦查。司法知识图谱:将法律条文、判例、证据规则结构化,支持自动
- 前端编程知识图谱
一筐猪的头发丝
前端javascript开发语言ecmascript
前端编程知识图谱包括以下内容:HTML(超文本标记语言):用于描述网页内容的语言。CSS(层叠样式表):用于控制网页的布局和样式的语言。JavaScript:一种常用的网页脚本语言,用于实现网页的交互功能。DOM(文档对象模型):用于表示HTML文档的树形结构,并提供了访问和操作HTML文档的方法。BOM(浏览器对象模型):用于表示浏览器窗口及其功能,提供了访问浏览器功能的方法。网络协议:包括HT
- 【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)
elon_z
创新项目实训—哈哈哈萌霓队知识图谱人工智能harmonyosecharts
【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)文章目录【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)项目博客概述一、技术方案与架构设计1.1整体架构1.2技术选型二、知识图谱构建实现2.1传统方法构建2.2基于大模型的智能构建三、后端知
- 知识图谱(KG)、LLM结合:【KG增强LLM:注入结构化知识】【LLM增强KG:自动化构建与补全】【KG与LLM协同:统一表示与联合推理】
u013250861
知识图谱(KnowledgeGraph)知识图谱自动化人工智能
知识图谱(KG)与大型语言模型(LLM)的结合是当前AI领域的重要研究方向。两者分别代表符号主义与连接主义的知识表示方式:KG提供结构化、可解释的符号化知识,而LLM具备强大的语义理解和泛化能力。二者的协同可显著提升知识的准确性、推理能力及可解释性。以下从技术路线、实现方法、应用场景及挑战四个维度展开分析。一、技术路线:三类核心融合模式1.KG增强LLM:注入结构化知识通过KG弥补LLM的黑盒缺陷
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- AI大白话(二):机器学习——AI是怎么“学习“的?
Code_流苏
AI知识图谱人工智能机器学习学习模式对比监督学习强化学习
引言:专栏:《AI知识图谱》AI大白话(一):5分钟了解AI到底是什么?大家好!上一篇我们聊了"AI到底是什么",知道了人工智能其实就是让计算机模拟人类智能的技术。但这就像告诉你汽车能跑,却没说明它怎么跑的。今天,我们就来揭秘AI的学习过程——也就是"机器学习"这个听起来很高大上的概念。名人说:苔花如米小,也学牡丹开。——袁枚《苔》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Code
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- DeepSeek赋能智慧教育数字化建设方案:DeepSeek在教学场景的应用、智慧教育平台建设方案、教师智能教研支持体系、学生个性化学习支持、实施路径与未来展望
公众号:优享智库
DEEPSEEKAI人工智能智慧教育智慧校园智慧高校教育大脑校园大脑人工智能大数据
方案聚焦于利用DeepSeek的人工智能技术推动教育行业的数字化转型,旨在通过技术创新提升教学效率、优化学习体验,并构建一个全面的智慧教育生态系统。DeepSeek技术赋能教育概述人工智能+教育的战略背景:国家政策支持AI与教育深度融合,市场需求激增,技术迭代加速。DeepSeek的核心技术优势:百亿参数教育大模型:在数学解题、作文评分等场景达到行业领先水平,支持多学科知识图谱构建。多模态交互引擎
- KAG框架在E-Health问答中的应用
徐福记c
人工智能深度学习机器学习
高质量知识图谱(KG)构建实体与关系的精准定义:使用强约束模式对疾病、症状、药物、医学检查等实体进行精确结构化定义。这种精确的结构化定义有助于提高回答问题的准确性,同时确保实体间关系的严谨性。领域术语与概念注入:利用医学专家整理的权威医学术语和概念知识,通过迭代提取的方式,增强知识图谱中领域术语和概念的覆盖度,减少知识颗粒度差异带来的噪声问题。逻辑形式引导的推理引擎逻辑形式生成与转换:根据用户的医
- 互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战
在未来等你
Java场景面试宝典AI技术编程JavaSpring
互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战引言在当今技术飞速发展的时代,AI大模型已成为企业数字化转型的重要引擎。无论是内容生成、智能客服、个性化推荐,还是知识图谱构建和语义理解,大模型的应用场景正在不断扩展。然而,将这些强大的模型落地到实际业务系统中,面临着巨大的技术挑战。本篇文章以一场真实的Java工程师面试为背景,围绕AI大模型应用实践这一主题,通过一位程序员郑薪苦与技
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- 开源图数据库(NebulaGraph)
deepdata_cn
数据库图数据库
NebulaGraph是一款广受欢迎的开源图数据库,它能够以毫秒级延迟处理海量数据,可快速扩展,并具备执行快速图分析的能力。NebulaGraph已广泛应用于社交媒体、推荐系统、知识图谱、安全、资金流、人工智能等领域。核心团队早在2005年便开始参与图数据库研发,曾主导蚂蚁金服分布式图数据库GeaBase的开发。2018年母公司悦数科技成立,专注于分布式图数据库技术研发。2019年5月,Nebul
- Python NLP教程之知识图谱,从文本构建知识,实现从文本或在线文章中提取知识库的管道(教程含源码)
知识大胖
Python源码大全知识图谱自然语言处理python
准备开始?这就是我们要做的:了解什么是知识库和知识图谱。了解如何构建知识图谱以及REBEL模型的工作原理。实现从文本中提取关系、构建知识图并将其可视化的完整管道。使用Streamlit构建交互式演示并将其部署到HuggingFaceSpaces。要尽早了解最终输出将是什么,请尝试这个HuggingFaceSpace上的演示。以下是从20篇关于“Google”的新闻文章中提取的知识图谱示例。在本指南
- 【知识图谱构建系列3】zero-shot的理念介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱人工智能
文章目录zero-shot用在线的大模型直接实现所谓的zero-shot提取试验参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/zero-shot“Zero-shot”的标准中文翻译是零样本或零次学习,指机器学习模型在未经特定任务数据训练的情况下直接处理该任务的能力。对于知识图谱构建而言,ze
- 基于MCP的桥梁设计规范智能解析与校审系统构建实践
熊猫钓鱼>_>
MCP腾讯云设计规范easyui前端
引言今天本文准备盘一个大活,聊一聊偏特定行业一点的AI技术深入应用思考及实践。一、传统设计行业项目背景与行业痛点在桥梁设计领域,标准规范是设计的基础,直接关系到桥梁结构的安全性、耐久性和经济性。然而,传统的规范应用方式存在诸多痛点,如查找效率低下、条款理解偏差、规范更新滞后等问题。随着人工智能技术的发展,利用自然语言处理和知识图谱等技术手段,对桥梁设计规范进行智能解析与校审,成为提升设计效率和准确
- 文心一言:AI人工智能领域的智能旅游规划
AI天才研究院
文心一言人工智能旅游ai
文心一言:AI人工智能领域的智能旅游规划关键词:文心一言、智能旅游规划、自然语言处理、知识图谱、推荐系统、用户体验、AI交互摘要:本文深入探讨百度文心一言在智能旅游规划领域的技术原理与应用实践。通过解析文心一言的自然语言处理(NLP)、知识图谱(KG)和智能推荐系统的核心架构,揭示其如何实现用户需求理解、旅游资源整合与个性化行程生成。结合具体代码案例和数学模型,详细阐述从用户意图识别到动态行程规划
- Python SDK索引耗时深度解析:从原理到终极优化指南
摘取一颗天上星️
深度学习python开发语言人工智能深度学习SDK
“为什么我的IDE在索引TensorFlow时要喝三杯咖啡?”——无数Python开发者的灵魂拷问当你新建Python项目并安装大型SDK后,IDE索引进度条像蜗牛爬行般缓慢,这背后隐藏着复杂的计算挑战。本文将深入剖析索引耗时的技术本质,并提供从即时优化到架构升级的全套解决方案。一、索引机制核心原理PythonSDK索引本质是构建代码知识图谱的过程:源代码语法解析符号提取类型推断引用关系图持久化存
- 大模型笔记:RAG(Retrieval Augmented Generation,检索增强生成)
1大模型知识更新的困境大模型的知识更新是很困难的,主要原因在于:训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱——>LLM的知识具有静态、封闭和有限的特点。——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生2RAG介绍这是
- 什么是知识图谱
三月七꧁ ꧂
知识图谱技术知识图谱人工智能算法语言模型自然语言处理
文章目录知识图谱概念知识图谱的发展历史知识图谱的价值知识图谱概念 知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名,或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网),其最初理想是把基于文本链接的万维
- (四)知识图谱之知识融合
只有左边一个小酒窝
知识图谱人工智能知识图谱
知识融合是知识图谱构建过程中的关键环节,主要用于解决多源异构数据的冲突、冗余及关联问题,实现知识的标准化和一体化。以下是知识融合的详细操作步骤,涵盖数据预处理、实体对齐、属性对齐、冲突消解、知识合并与验证等核心流程:一、数据预处理在进行知识融合前,需对多源数据进行清洗和标准化,确保数据质量和一致性。同时,去除数据中的噪声、错误、重复或不一致信息,提升数据质量。以下是数据清洗的详细操作步骤及方法,结
- 华为HCIP-Cloud-Service认证H13-821V2.0-001
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s