- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 人工智能值得关注的技术研究方向
喜欢打酱油的老鸟
人工智能人工智能值得关注的技术研究方向
人工智能值得关注的技术研究方向为了更好地破除上述人工智能技术研究的瓶颈问题,在AI学术研究领域,一些新的技术发展趋势和研究方向也值得关注,包括:(1)从专用人工智能到通用人工智能是大势所趋,一些科技巨头包括国家机构都在布局通用人工智能的研究,微软成立人工智能实验室以挑战通用人工智能为主要目标;(2)可解释的人工智能系统备受关注,也将成为突破统计学习瓶颈问题的一个重要方向。DARPA的报告:第一个波
- 机器学习入门--支持向量机原理与实践
Dr.Cup
机器学习入门支持向量机机器学习算法
支持向量机模型支持向量机(SupportVectorMachine,SVM)是一种常用的监督学习算法,主要用于分类和回归问题。它的原理简单而强大,在许多实际应用中取得了很好的效果。原理支持向量机(SupportVectorMachine,SVM)是一种常用的机器学习算法,用于分类和回归问题。其原理是基于统计学习理论中的结构风险最小化原则。SVM的主要思想是将数据通过一个高维特征空间进行映射,使得在
- 统计学习方法(李航)--第二章 感知机(比较基础)
人間煙火Just
感知机是二分类的线性分类模型,属于判别模型,包括原始形式和对偶形式。(一)感知机模型公式为:f是输出,x是输入,w和b是参数,sign是符号函数(大于0为1,小于0为-1)几何解释:对于特征空间Rn中的一个超平面S,w是S的法向量,b是截距,将超平面空间划分为两个部分,完成2分类任务。(二)学习策略1.数据集的线性可分性:若存在wx+b的超平面可以将数据集完全分割,则称为线性可分。2.学习策略(以
- 机器学习系列(8)——提升树与GBDT算法
陌简宁
机器学习
本文介绍提升树模型与GBDT算法。0x01、提升树模型提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法,以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:其中,表示决策树,为决策树的
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 用户体验度量-量化用户体验的统计学方法
挖泥巴
用户体验度量-量化用户体验的统计学方法作者:JeffSauro/JamesR.Lewis本书含有大量的统计学方法,用统计学方法来量化用户体验的度量问题。如果会统计学习或有打算往这个方向发展的用研同学可以参考。怎么说也是解决掉了一个大难题,既你的数据客观吗?要客观就按书上的来吧。用户研究的主要工作是对用户、目标、需求和行为能力的系统研究,用于指导产品设计及产品经营体验度量的基础都是围绕可用性测试、参
- 统计学习03:参数、统计量&标准误、置信区间
小贝学生信
要点一:参数与统计量参数(parameter)描述总体(population)的概括性度量;统计参数必须要在整体数据都可被观察的时候才能计算,通常由于数量过大而不便于统计计算;例如,一个完美的人口普查。统计参数一般是固定的,但难以确定;参数一般用希腊字母表示,例如总体均值μ、标准差σ统计量(statistic)描述样本(sample)的概括性度量;一般根据统计量来估计总体参数,即为参数点估计;样本
- 【深度学习理论】持续更新
一轮秋月
科研基础深度学习人工智能
文章目录1.统计学习理论1.统计学习理论统计学习理论,一款适合零成本搞深度学习的大冤种的方向从人类学习到机器学习的对比(学习的过程分为归纳和演绎),引出泛化和过拟合的概念。如何表示归纳的函数规律呢?以监督问题为例,需要学习X到Y的映射,先做假设空间,为了使假设空间和真实映射接近,需要损失函数来优化假设空间。学习的目的是学习数据的分布而不是每一个数据点本身,所以希望期望风险最小(期望风险即假设在数据
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 贝叶斯的缺点
人机与认知实验室
机器学习人工智能
贝叶斯方法是一种统计学习方法,通过利用贝叶斯定理来计算给定先验概率的情况下,后验概率的条件概率。虽然贝叶斯方法在许多领域中应用广泛且有效,但也存在一些缺点。以下是一些贝叶斯方法的缺点的例子:1、先验概率的选择贝叶斯方法依赖于先验概率的选择,先验概率的不准确性可能导致后验概率的不准确性。选择先验概率是非常困难的,特别是在没有明确领域知识或可靠数据支持的情况下。2、计算复杂度在贝叶斯方法中,计算后验概
- 向量机SVM原理详解
AI-CS研究生
人工智能AISVM向量机人工智能
转自:http://www.blogjava.net/zhenandaci/category/31868.html(一)SVM的简介支持向量机(SupportVectorMachine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC维理论和
- SVM入门(一)至(三)Refresh
warmbeast
按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅.(一)SVM的八股简介支持向量机(SupportVectorMachine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的
- SVM(1-3)
discxuwei
ML算法hypervectorc出版blog
从Jasper'Blog转载支持向量机(SupportVectorMachine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy
- 《深度学习,统计学习,数学基础》人工智能算法工程师手册
La victoria
大数据机器学习
[导读]市面上很多人工智能相关的书籍。大部分的书,面向小白,内容深度不够;小部分教材书或者科研书,内容艰深,又过于复杂。那么有没有,面向算法工程师(程序员)人群的,面向有一定数学基础、算法基础,能够快速上手写代码的人群的人工智能手册呢?有的!而且免费开源,非常有程序员范!《AI算法工程师手册》你值得拥有!作者Github:https://github.com/huaxz1986手册地址:http:
- 《深度学习,统计学习,数学基础》人工智能算法工程师手册:程序员写的AI书,50 章一网打尽...
数据派THU
来源:专知本文约3400字,建议阅读10+分钟。免费开源人工智能手册,带你快速上手写代码![导读]市面上很多人工智能相关的书籍。大部分的书,面向小白,内容深度不够;小部分教材书或者科研书,内容艰深,又过于复杂。那么有没有,面向算法工程师(程序员)人群的,面向有一定数学基础、算法基础,能够快速上手写代码的人群的人工智能手册呢?有的!而且免费开源,非常有程序员范!《AI算法工程师手册》你值得拥有!作者
- 机器学习知识体系总结
qq_36661243
机器学习算法
机器学习知识体系总结什么是机器学习?机器学习体系概括监督学习(SupervisedLearning)十种监督学习方法统计学习方法:模型+策略+学习方法模型策略学习算法无监督学习(UnsupervisedLearning)半监督学习参考所有的知识,无论过去,当下和未来,都可以利用某个单一,通用的学习算法中从数据中获取。–《终极算法》什么是机器学习?机器学习(MachineLearning,ML)是一
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 最大熵阈值python_李航统计学习方法(六)----逻辑斯谛回归与最大熵模型
weixin_39669638
最大熵阈值python
本文希望通过《统计学习方法》第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最优化算法的Java实现。本文属于初学者的个人笔记,能力有限,无法对著作中的公式推导做进一步发挥,也无法保证自己的理解是完全正确的,特此说明,恳请指教逻辑斯谛回归模型逻辑斯谛
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 【动手学大模型】第一章 大模型简介
Farah_Y
大模型开发ai
动手学大模型第一章大模型简述语言建模最早使用统计学习的方法,通过前面的词汇来预测下一个词汇。其在理解复杂语言规则方面存在一定局限性。之后引入了深度学习的思想,使用神经网络模型来更好的捕捉语言中的复杂关系。随着Transformer架构的神经网络模型引入,通过大量的文本数据训练,模型可以深入理解语言规则和模式。同时研究人员发现,随着语言模型规模的扩大,比如增加模型大小和使用更多的训练数据,模型展现出
- 统计学习 复习(知识点+习题)
玛卡巴卡_qin
课程学习
复习资料:https://github.com/RuijieZhu94/StatisticalLearning_USTC第一章线性回归1.Fromonetotwo最小二乘课后题有偏/无偏估计加权最小二乘2.Regularization线性回归(二维情况)求解有约束优化问题正则化最小加权二乘不确定答案形式3.BasicFunction核函数岭回归有个关于核函数的推导,但应该不会考4.Bias-var
- 机器学习 强化学习 深度学习的区别与联系
坠金
机器学习机器学习人工智能深度学习
机器学习强化学习深度学习机器学习按道理来说,这个领域(机器学习)应该叫做统计学习(StatisticalLearning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑,把统计和物理的数理模型,改名叫做机器,比如**模型(model)就叫**机(machine),把一些层次模型(hierarchicalmodel)说成是“网”(net)。这样,搞出了几个“机”和“网”之后,
- 李航统计学习方法----决策树章节学习笔记以及python代码
詹sir的BLOG
大数据python决策树算法剪枝
目录1决策树模型2特征选择2.1数据引入2.2信息熵和信息增益3决策树生成3.1ID3算法3.2C4.5算法4决策树的剪枝5CART算法(classificationandregressiontree)5.1回归树算法5.2分类树的生成5.3CART剪枝6PYTHON代码实例决策树算法可以应用于分类问题与回归问题,李航的书中主要讲解的是分类树,构建决策树分为三个过程,分别是特征选择、决策树生成、决
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第5章决策树—python实践书上题目5.1利用ID3算法生成决策树,例5.3scikit-learn实例《统计学习方法:李航》笔记从原理到实现(基于python)--第5章决策树第5章决策树—python实践importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt%matplotlibinlinefromsklearn.dat
- 扩展学习|统计学习理论(SLT)与极限学习机(ELM)应用于大社会数据分析
封印师请假去地球钓鱼
计算机辅助信息分析主题扩展阅读极限学习机大数据分析
文献来源:[1]OnetoL,BisioF,CambriaE,etal.StatisticalLearningTheoryandELMforBigSocialDataAnalysis[J].IEEEComputationalIntelligenceMagazine,2016,11(3):45-55.DOI:10.1109/MCI.2016.2572540.提取链接:链接:https://pan.b
- ztree异步加载
3213213333332132
JavaScriptAjaxjsonWebztree
相信新手用ztree的时候,对异步加载会有些困惑,我开始的时候也是看了API花了些时间才搞定了异步加载,在这里分享给大家。
我后台代码生成的是json格式的数据,数据大家按各自的需求生成,这里只给出前端的代码。
设置setting,这里只关注async属性的配置
var setting = {
//异步加载配置
- thirft rpc 具体调用流程
BlueSkator
中间件rpcthrift
Thrift调用过程中,Thrift客户端和服务器之间主要用到传输层类、协议层类和处理类三个主要的核心类,这三个类的相互协作共同完成rpc的整个调用过程。在调用过程中将按照以下顺序进行协同工作:
(1) 将客户端程序调用的函数名和参数传递给协议层(TProtocol),协议
- 异或运算推导, 交换数据
dcj3sjt126com
PHP异或^
/*
* 5 0101
* 9 1010
*
* 5 ^ 5
* 0101
* 0101
* -----
* 0000
* 得出第一个规律: 相同的数进行异或, 结果是0
*
* 9 ^ 5 ^ 6
* 1010
* 0101
* ----
* 1111
*
* 1111
* 0110
* ----
* 1001
- 事件源对象
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- MySql配置及相关命令
g21121
mysql
MySQL安装完毕后我们需要对它进行一些设置及性能优化,主要包括字符集设置,启动设置,连接优化,表优化,分区优化等等。
一 修改MySQL密码及用户
 
- [简单]poi删除excel 2007超链接
53873039oycg
Excel
采用解析sheet.xml方式删除超链接,缺点是要打开文件2次,代码如下:
public void removeExcel2007AllHyperLink(String filePath) throws Exception {
OPCPackage ocPkg = OPCPac
- Struts2添加 open flash chart
云端月影
准备以下开源项目:
1. Struts 2.1.6
2. Open Flash Chart 2 Version 2 Lug Wyrm Charmer (28th, July 2009)
3. jofc2,这东西不知道是没做好还是什么意思,好像和ofc2不怎么匹配,最好下源码,有什么问题直接改。
4. log4j
用eclipse新建动态网站,取名OFC2Demo,将Struts2 l
- spring包详解
aijuans
spring
下载的spring包中文件及各种包众多,在项目中往往只有部分是我们必须的,如果不清楚什么时候需要什么包的话,看看下面就知道了。 aspectj目录下是在Spring框架下使用aspectj的源代码和测试程序文件。Aspectj是java最早的提供AOP的应用框架。 dist 目录下是Spring 的发布包,关于发布包下面会详细进行说明。 docs&nb
- 网站推广之seo概念
antonyup_2006
算法Web应用服务器搜索引擎Google
持续开发一年多的b2c网站终于在08年10月23日上线了。作为开发人员的我在修改bug的同时,准备了解下网站的推广分析策略。
所谓网站推广,目的在于让尽可能多的潜在用户了解并访问网站,通过网站获得有关产品和服务等信息,为最终形成购买决策提供支持。
网站推广策略有很多,seo,email,adv
- 单例模式,sql注入,序列
百合不是茶
单例模式序列sql注入预编译
序列在前面写过有关的博客,也有过总结,但是今天在做一个JDBC操作数据库的相关内容时 需要使用序列创建一个自增长的字段 居然不会了,所以将序列写在本篇的前面
1,序列是一个保存数据连续的增长的一种方式;
序列的创建;
CREATE SEQUENCE seq_pro
2 INCREMENT BY 1 -- 每次加几个
3
- Mockito单元测试实例
bijian1013
单元测试mockito
Mockito单元测试实例:
public class SettingServiceTest {
private List<PersonDTO> personList = new ArrayList<PersonDTO>();
@InjectMocks
private SettingPojoService settin
- 精通Oracle10编程SQL(9)使用游标
bijian1013
oracle数据库plsql
/*
*使用游标
*/
--显示游标
--在显式游标中使用FETCH...INTO语句
DECLARE
CURSOR emp_cursor is
select ename,sal from emp where deptno=1;
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
begin
ope
- 【Java语言】动态代理
bit1129
java语言
JDK接口动态代理
JDK自带的动态代理通过动态的根据接口生成字节码(实现接口的一个具体类)的方式,为接口的实现类提供代理。被代理的对象和代理对象通过InvocationHandler建立关联
package com.tom;
import com.tom.model.User;
import com.tom.service.IUserService;
- Java通信之URL通信基础
白糖_
javajdkwebservice网络协议ITeye
java对网络通信以及提供了比较全面的jdk支持,java.net包能让程序员直接在程序中实现网络通信。
在技术日新月异的现在,我们能通过很多方式实现数据通信,比如webservice、url通信、socket通信等等,今天简单介绍下URL通信。
学习准备:建议首先学习java的IO基础知识
URL是统一资源定位器的简写,URL可以访问Internet和www,可以通过url
- 博弈Java讲义 - Java线程同步 (1)
boyitech
java多线程同步锁
在并发编程中经常会碰到多个执行线程共享资源的问题。例如多个线程同时读写文件,共用数据库连接,全局的计数器等。如果不处理好多线程之间的同步问题很容易引起状态不一致或者其他的错误。
同步不仅可以阻止一个线程看到对象处于不一致的状态,它还可以保证进入同步方法或者块的每个线程,都看到由同一锁保护的之前所有的修改结果。处理同步的关键就是要正确的识别临界条件(cri
- java-给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
bylijinnan
java
public class DeleteExtraSpace {
/**
* 题目:给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
* 方法1.用已有的String类的trim和replaceAll方法
* 方法2.全部用正则表达式,这个我不熟
* 方法3.“重新发明轮子”,从头遍历一次
*/
public static v
- An error has occurred.See the log file错误解决!
Kai_Ge
MyEclipse
今天早上打开MyEclipse时,自动关闭!弹出An error has occurred.See the log file错误提示!
很郁闷昨天启动和关闭还好着!!!打开几次依然报此错误,确定不是眼花了!
打开日志文件!找到当日错误文件内容:
--------------------------------------------------------------------------
- [矿业与工业]修建一个空间矿床开采站要多少钱?
comsci
地球上的钛金属矿藏已经接近枯竭...........
我们在冥王星的一颗卫星上面发现一些具有开采价值的矿床.....
那么,现在要编制一个预算,提交给财政部门..
- 解析Google Map Routes
dai_lm
google api
为了获得从A点到B点的路劲,经常会使用Google提供的API,例如
[url]
http://maps.googleapis.com/maps/api/directions/json?origin=40.7144,-74.0060&destination=47.6063,-122.3204&sensor=false
[/url]
从返回的结果上,大致可以了解应该怎么走,但
- SQL还有多少“理所应当”?
datamachine
sql
转贴存档,原帖地址:http://blog.chinaunix.net/uid-29242841-id-3968998.html、http://blog.chinaunix.net/uid-29242841-id-3971046.html!
------------------------------------华丽的分割线--------------------------------
- Yii使用Ajax验证时,如何设置某些字段不需要验证
dcj3sjt126com
Ajaxyii
经常像你注册页面,你可能非常希望只需要Ajax去验证用户名和Email,而不需要使用Ajax再去验证密码,默认如果你使用Yii 内置的ajax验证Form,例如:
$form=$this->beginWidget('CActiveForm', array( 'id'=>'usuario-form',&
- 使用git同步网站代码
dcj3sjt126com
crontabgit
转自:http://ued.ctrip.com/blog/?p=3646?tn=gongxinjun.com
管理一网站,最开始使用的虚拟空间,采用提供商支持的ftp上传网站文件,后换用vps,vps可以自己搭建ftp的,但是懒得搞,直接使用scp传输文件到服务器,现在需要更新文件到服务器,使用scp真的很烦。发现本人就职的公司,采用的git+rsync的方式来管理、同步代码,遂
- sql基本操作
蕃薯耀
sqlsql基本操作sql常用操作
sql基本操作
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:30:33 星期一
&
- Spring4+Hibernate4+Atomikos3.3多数据源事务管理
hanqunfeng
Hibernate4
Spring3+后不再对JTOM提供支持,所以可以改用Atomikos管理多数据源事务。Spring2.5+Hibernate3+JTOM参考:http://hanqunfeng.iteye.com/blog/1554251Atomikos官网网站:http://www.atomikos.com/ 一.pom.xml
<dependency>
<
- jquery中两个值得注意的方法one()和trigger()方法
jackyrong
trigger
在jquery中,有两个值得注意但容易忽视的方法,分别是one()方法和trigger()方法,这是从国内作者<<jquery权威指南》一书中看到不错的介绍
1) one方法
one方法的功能是让所选定的元素绑定一个仅触发一次的处理函数,格式为
one(type,${data},fn)
&nb
- 拿工资不仅仅是让你写代码的
lampcy
工作面试咨询
这是我对团队每个新进员工说的第一件事情。这句话的意思是,我并不关心你是如何快速完成任务的,哪怕代码很差,只要它像救生艇通气门一样管用就行。这句话也是我最喜欢的座右铭之一。
这个说法其实很合理:我们的工作是思考客户提出的问题,然后制定解决方案。思考第一,代码第二,公司请我们的最终目的不是写代码,而是想出解决方案。
话粗理不粗。
付你薪水不是让你来思考的,也不是让你来写代码的,你的目的是交付产品
- 架构师之对象操作----------对象的效率复制和判断是否全为空
nannan408
架构师
1.前言。
如题。
2.代码。
(1)对象的复制,比spring的beanCopier在大并发下效率要高,利用net.sf.cglib.beans.BeanCopier
Src src=new Src();
BeanCopier beanCopier = BeanCopier.create(Src.class, Des.class, false);
- ajax 被缓存的解决方案
Rainbow702
JavaScriptjqueryAjaxcache缓存
使用jquery的ajax来发送请求进行局部刷新画面,各位可能都做过。
今天碰到一个奇怪的现象,就是,同一个ajax请求,在chrome中,不论发送多少次,都可以发送至服务器端,而不会被缓存。但是,换成在IE下的时候,发现,同一个ajax请求,会发生被缓存的情况,只有第一次才会被发送至服务器端,之后的不会再被发送。郁闷。
解决方法如下:
① 直接使用 JQuery提供的 “cache”参数,
- 修改date.toLocaleString()的警告
tntxia
String
我们在写程序的时候,经常要查看时间,所以我们经常会用到date.toLocaleString(),但是date.toLocaleString()是一个过时 的API,代替的方法如下:
package com.tntxia.htmlmaker.util;
import java.text.SimpleDateFormat;
import java.util.
- 项目完成后的小总结
xiaomiya
js总结项目
项目完成了,突然想做个总结但是有点无从下手了。
做之前对于客户端给的接口很模式。然而定义好了格式要求就如此的愉快了。
先说说项目主要实现的功能吧
1,按键精灵
2,获取行情数据
3,各种input输入条件判断
4,发送数据(有json格式和string格式)
5,获取预警条件列表和预警结果列表,
6,排序,
7,预警结果分页获取
8,导出文件(excel,text等)
9,修