CUDA(五)用deviceQuery看GPU属性

在CUDA安装好后可以用DeviceQuery看一下GPU的相关属性,从而对GPU有一定了解,有助于今后的CUDA编程。


#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
#include
#include
int main()
{
    int deviceCount;
    cudaGetDeviceCount(&deviceCount);
    int dev;
    for (dev = 0; dev < deviceCount; dev++)
    {
        cudaDeviceProp deviceProp;
        cudaGetDeviceProperties(&deviceProp, dev);
        if (dev == 0)
        {
            if (/*deviceProp.major==9999 && */deviceProp.minor = 9999&&deviceProp.major==9999)
                printf("\n");

        }
        printf("\nDevice%d:\"%s\"\n", dev, deviceProp.name);
        printf("Total amount of global memory                   %u bytes\n", deviceProp.totalGlobalMem);
        printf("Number of mltiprocessors                        %d\n", deviceProp.multiProcessorCount);
        printf("Total amount of constant memory:                %u bytes\n", deviceProp.totalConstMem);
        printf("Total amount of shared memory per block         %u bytes\n", deviceProp.sharedMemPerBlock);
        printf("Total number of registers available per block:  %d\n", deviceProp.regsPerBlock);
        printf("Warp size                                       %d\n", deviceProp.warpSize);
        printf("Maximum number of threada per block:            %d\n", deviceProp.maxThreadsPerBlock);
        printf("Maximum sizes of each dimension of a block:     %d x %d x %d\n", deviceProp.maxThreadsDim[0],
            deviceProp.maxThreadsDim[1],
            deviceProp.maxThreadsDim[2]);
        printf("Maximum size of each dimension of a grid:       %d x %d x %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
        printf("Maximum memory pitch :                          %u bytes\n", deviceProp.memPitch);
        printf("Texture alignmemt                               %u bytes\n", deviceProp.texturePitchAlignment);
        printf("Clock rate                                      %.2f GHz\n", deviceProp.clockRate*1e-6f);
    }
    printf("\nTest PASSED\n");
    getchar();
}

代码中先通过cudaGetDeviceCount来得到系统中NVIDIA GPU的数目
再通过函数cudaGetDeviceProperties,获取系统中GPU的属性;
再获取属性后查看最直接方法是设一个断点通过调试就能看到;
要不就通过打印的方法在控制台上显示;
CUDA(五)用deviceQuery看GPU属性_第1张图片
如运行结果所示;
deviceProp.name为GPU名字,如果没有GPU则会输出 Device Emulation
deviceProp.totalGlobalMem返回的是全局储存器的大小,对大数据或一些大模型计算时显存大小必须大于数据大小,如图返回的是2GB的存储大小,
deviceProp.multiProcessorCount返回的是设备中流多处理器(SM)的个数,流处理器(SP)的个数SM数×每个SM包含的SP数,其中帕斯卡为每个SM,64个SP,麦克斯韦为128个,开普勒为192个,费米为32个,
deviceProp.totalConstMem返回的是常数储存器的大小,如同为64kB
deviceProp.sharedMemPerBlock返回共享储存器的大小,共享存储器速度比全局储存器快,
deviceProp.regsPerBlock返回寄存器的数目;
deviceProp.warpSize返回线程束中线程多少;
deviceProp.maxThreadsPerBlock返回一个block中最多可以有的线程数;
deviceProp.maxThreadsDim[]返回block内3维度中各维度的最大值
deviceProp.maxGridSize[]返回Grid内三维度中各维度的最大值;
deviceProp.memPitch返回对显存访问时对齐时的pitch的最大值;
deviceProp.texturePitchAlignment返回对纹理单元访问时对其参数的最大值;
deviceProp.clockRate返回显存的频率;

你可能感兴趣的:(cuda,gpu,编程,CUDA)