- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- python数值分析
寂静丿夏夜
python数据分析numpy
python数值分析上学期上数值分析课的时候被老师要求用python写代码,最后代码加上实验报告,写了一天终于给整完了。为了让大家不在这么煎熬秃顶,我就把我之前写的代码整理一下分享给大家。python二分法解决方程:x^3±2*x-5、、、defsolve_function(x):returnx**3-2*x-5defdichotomy(left,right,eps):mid=(left+righ
- 二次和三次样条曲线的作用,生成二次和三次样条曲线的方法
kfjh
算法
为什么二次样条曲线在插值和逼近中有重要作用二次样条曲线在插值和逼近中有重要作用,主要原因如下:二次样条插值具有一些重要的性质和应用价值。例如,它能够保证拟合曲线不仅通过所有给定的数据点,而且在每段曲线连接处一阶导数相等,从而使得拟合曲线相对平滑。每段曲线是二次曲线。为什么三次样条曲线在插值和逼近中有重要作用三次样条曲线在插值和逼近中有重要作用,主要原因如下:首先,三次样条插值是一种常用的数值分析方
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 北航数值分析作业三
weixin_34214500
c/c++ui数据结构与算法
frommathimport*t_table=[0,0.2,0.4,0.6,0.8,1.0]th=0.2u_table=[0,0.4,0.8,1.2,1.6,2]uh=0.4z_table=[[-0.5,-0.34,0.14,0.94,2.06,3.5],[-0.42,-0.5,-0.26,0.3,1.18,2.38],[-0.18,-0.5,-0.5,-0.18,0.46,1.42],[0.22
- 数值分析大作业c语言版,数值分析大作业3
黄之昊
数值分析大作业c语言版
该楼层疑似违规已被系统折叠隐藏此楼查看此楼数值分析大作业3一、设计方案1.使用牛顿迭代法,对原题中给出的,,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2.对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3.从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时
- 今日小结
夜景_Y
明天有门数值分析考试,这几天一直在刷题库,刷的遍数不算多,题型也大致看了一遍。仍是有许多不会。内心很慌,但是因为今天写的很多,晚上应该歇歇脑子了。刚有室友给我分享的一套题,还没来得及看。大致看了一眼,有我没见过的题,希望明天考试顺利。图片发自App
- LeetCode刷题记——69. x 的平方根(牛顿迭代法)
JimmyGreen
题目描述:实现intsqrt(intx)函数。计算并返回x的平方根,其中x是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例1:输入:4输出:2示例2:输入:8输出:2说明:8的平方根是2.82842...,由于返回类型是整数,小数部分将被舍去。一想到平方根,我第一时间想到用2分法的方法去计算,用一个while循环来控制终止条件。但是突然想到在数值分析中学到的牛顿迭代法,
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 有限元编程经典教材推荐
suoge223
有限元编程从入门到精通matlabpythonc++c语言githubvisualstudiocode制造
有限元方法是工程学和科学计算领域中广泛应用的数值分析技术。有关有限元编程的教材通常覆盖了理论、数值方法和实际编程技能。以下是10本关于有限元编程的教材,每本书都具有其独特的优势,并为读者提供了深入理解和实践有限元方法的机会。需要的小伙伴可以私信我~1.《AFirstCourseintheFiniteElementMethod》byDarylL.Logan-理由:这本书是有限元方法领域的经典之作,适
- Python---Pycharm安装各种库(第三方库)
程序员老冉
pythonpycharm开发语言青少年编程汇编程序人生
一、前言Pycharm中,通常需要安装很多第三方库,才可以使用相应的拓展功能,这篇文档给你介绍Pycharm中的常用库,以及安装的两种方法!二、Pycharm常用库的介绍Pycharm是一款非常流行的Python集成开发环境(IDE),支持多种Python库和框架。以下是一些常用的Python库:NumPy:用于科学计算和数值分析的Python库。Pandas:用于数据分析和数据预处理的Pytho
- [NA]Lab2:求多项式函数的零点
ZJU_TEDA
数值分析数值分析
任务概述数值分析课程的第二个实验,计算一个多项式函数在给定区间[a,b]上的零点。多项式函数形如:p(x)=cnxn+cn−1xn−1+...c1x+c0裁判数据保证在给定区间内存在唯一的实数根。函数接口定义doublePolynomial_Root(intn,doublec[],doublea,doubleb,doubleEPS);其中n表示多项式的阶数,c为传入多项式的系数,a和b分别为区间的
- [计算机数值分析]牛顿法求解方程的根
Spring-_-Bear
武理四年c++数值分析牛顿迭代法迭代求方程根
Spring-_-Bear的CSDN博客导航对于方程f(x)=0f(x)=0f(x)=0设已知它的近似根xkx_{k}xk,则函数f(x)f(x)f(x)在点xkx_{k}xk附近可用一阶泰勒多项式p(x)=f(xk)+f′(xk)(x−xk)p(x)=f(x_{k})+f'(x_{k})(x-x_{k})p(x)=f(xk)+f′(xk)(x−xk)来近似,因此方程f(x)=0f(x)=0f(x
- 我们究竟读了一个什么样的大学?
田洲
在大学里,我们表面上在学习,但是根本不知道学了些什么,学了怎么用,为什么而学。我感觉现在三四流大学的教育跟现实是脱节的,很落后,学校的培养方案变了又变,可能他也不知道自己想要培养什么样的学生。像我们这样的大学,不注重学生找什么样的工作,反而格外注意研究生升学率,是不是有点本末倒置了呢?把所有的东西都寄希望于未来,那我现在在干嘛,要你这个本科是干嘛?研究生有一门公共课叫数值分析,而我们大二就学过了,
- 我的最大收获与成长
civilpy
python
经历Iamnotadesignernoracoder.I'mjustaguywithapoint-of-viewandacomputer.翻译:俺不是码畜,俺只是一条对着电脑有点想法的土木狗。笔者1982年出生,西南交通大学渣硕,目前仍在土木行业(PS:年纪大,跳不动)。2001-2005年,本科阶段学的C艹,60几分飘过。2005-2008年,研究生阶段用Ansys、Flac3D做数值分析。20
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 无法从字符串单元格获取数值:Cannot get a NUMERIC value from a STRING cell
兰觅
说明:从excel中上传数据,报如下错CannotgetaNUMERICvaluefromaSTRINGcell:无法从字符串单元格获取数值分析如下:excel单元格类型为string类型的,获取值时写的数值类型如图所示解决方式如下:1.先获取单元格string类型的数据2.然后转换为double类型图示
- Numpy使用简介
ZShiJ
数据挖掘Pythonnumpy
Numpy相关题目【Python】——Numpy初体验【Python】——NumPy基础及取值操作Numpy是基于Python的通用数值计算工具包,其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包,比如Scipy,和数值分析工具包,比如Pandas、Scikit-learn,都依赖Numpy。利用Numpy,能够高效地对一维数组、矩阵或更高维度的多维数组进行运算,性能比使用Python列
- MATLAB介绍
人间造梦工厂
MATLABMATLAB
MATLAB是MATrixLABoratory即矩阵实验室的缩写,是由美国MathWorks公司开发的专业工程与科学计算软件,是一个集科学计算、数值分析、矩阵计算、数据可视化及交互式程序设计于一体的计算环境,形成一个易于使用的视窗环境。MATLAB执行由MATLAB语言编写的程序,同时提供丰富的预定义函数库,可以简化编程过程,提高编程效率。MATLAB有很多自带的功能强大的工具,如:各类工具箱编辑
- 【数值分析】最小二乘,最佳一致逼近
你哥同学
数值分析matlab最小二乘最佳一致逼近
最小二乘用于不知道f(x){f(x)}f(x)的时候,[a,b]{[a,b]}[a,b]只有一堆点。x1∣x2∣x3∣⋯∣xn∣−−−−−−−−−−f(x1)∣f(x2)∣f(x3)∣⋯∣f(xn)∣\begin{array}{cccccc}x_1&|&x_2&|&x_3&|&\cdots&|&x_n&|\\-&-&-&-&-&-&-&-&-&-\\f(x_1)&|&f(x_2)&|&f(x_3)
- 【数值分析】数值微分
你哥同学
数值分析matlab数值微分
1.基于Taylor公式的数值微分公式f′(x)≈f(x+h)−f(x)h , 截断误差 −f′′(ξ)2hf'(x)\approx\frac{f(x+h)-f(x)}{h}\,\,,\,\,截断误差\,\,\,-\frac{f''(\xi)}{2}hf′(x)≈hf(x+h)−f(x),截断误差−2f′′(ξ)hf′(x)≈f(x)−f(x−h)h , 截断误差 −f′′(ξ)2
- 【数值分析】区间折半法,matlab实现
你哥同学
数值分析matlab区间折半法数值分析
区间折半法从梯形公式出发,上一步步长为h{h}h,则有步长折半后的积分T2n=12Tn+h2∑i=0n−1f(xi+0.5)T_{2n}=\frac{1}{2}T_n+\frac{h}{2}\sum_{i=0}^{n-1}f(x_{i+0.5})T2n=21Tn+2hi=0∑n−1f(xi+0.5)matlab实现%%区间折半法例子formatlong[Ii]=halfStep(@f,0,1,1e
- 【数值分析】最佳平方逼近,最佳逼近
你哥同学
数值分析数值分析最佳逼近
最佳平方逼近∑k=0nWk(f(xk)−ϕ(xk))2=min\sum_{k=0}^{n}W_k(f(x_k)-\phi(x_k))^2=\mink=0∑nWk(f(xk)−ϕ(xk))2=min→节点非常多时∫abρ(x)(f(x)−ϕ(x))2dx=min\xrightarrow[]{\text{节点非常多时}}\int_a^b\rho(x)(f(x)-\phi(x))^2\mathrmd
- 【数值分析】逼近,正交多项式
你哥同学
数值分析线性代数数值分析逼近
逼近由离散点(函数表)给出函数关系通常有两种方法:使用多项式插值使用多项式插值会带来两个问题:1.龙格现象2.数值本身带有误差,使用插值条件来确定函数关系不合理三次样条插值三次样条插值克服了龙格现象,但计算量大。曲线拟合的最小二乘法可以克服龙格现象,同时不会有大计算量。用函数序列pn(x){p_n(x)}pn(x)去近似一个函数f(x){f(x)}f(x),称为逼近。用函数Φ{\Phi}Φ去近似一
- Anaconda下载安装与使用
ZShiJ
Python数据挖掘pythonjupyteranaconda
前言Pandas之所以被称为工具包,原因是Pandas这个工具是由不同的代码模块组成的。每一个代码模块的功能不同,合在一起构成Pandas的丰富功能。其他工具包亦然。名称描述NumpyNumpy是通用的数值计算工具包,包含大量数学计算函数和矩阵运算函数。多数科学计算工具包和数值分析工具包依赖Numpy。PandasPandas是基于Numpy构建的、开源的Python数据分析工具包,依赖高效的数据
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。