深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移

先看一下图像效果。
把图像A转成B风格的山水画,结果C。
A
深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移_第1张图片

B
深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移_第2张图片

结果C:
深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移_第3张图片

训练好的VGG19模型下载:http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

model.py代码:

import tensorflow as tf
import numpy as np
import settings
import scipy.io
import scipy.misc


class Model(object):
    def __init__(self, content_path, style_path):
        self.content = self.loadimg(content_path)  # 加载内容图片
        self.style = self.loadimg(style_path)  # 加载风格图片
        self.random_img = self.get_random_img()  # 生成噪音内容图片
        self.net = self.vggnet()  # 建立vgg网络

    def vggnet(self):
        # 读取预训练的vgg模型
        vgg = scipy.io.loadmat(settings.VGG_MODEL_PATH)
        vgg_layers = vgg['layers'][0]
        net = {}
        # 使用预训练的模型参数构建vgg网络的卷积层和池化层
        # 全连接层不需要
        # 注意,除了input之外,这里参数都为constant,即常量
        # 和平时不同,我们并不训练vgg的参数,它们保持不变
        # 需要进行训练的是input,它即是我们最终生成的图像
        net['input'] = tf.Variable(np.zeros([1, settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH, 3]), dtype=tf.float32)
        # 参数对应的层数可以参考vgg模型图
        net['conv1_1'] = self.conv_relu(net['input'], self.get_wb(vgg_layers, 0))
        net['conv1_2'] = self.conv_relu(net['conv1_1'], self.get_wb(vgg_layers, 2))
        net['pool1'] = self.pool(net['conv1_2'])
        net['conv2_1'] = self.conv_relu(net['pool1'], self.get_wb(vgg_layers, 5))
        net['conv2_2'] = self.conv_relu(net['conv2_1'], self.get_wb(vgg_layers, 7))
        net['pool2'] = self.pool(net['conv2_2'])
        net['conv3_1'] = self.conv_relu(net['pool2'], self.get_wb(vgg_layers, 10))
        net['conv3_2'] = self.conv_relu(net['conv3_1'], self.get_wb(vgg_layers, 12))
        net['conv3_3'] = self.conv_relu(net['conv3_2'], self.get_wb(vgg_layers, 14))
        net['conv3_4'] = self.conv_relu(net['conv3_3'], self.get_wb(vgg_layers, 16))
        net['pool3'] = self.pool(net['conv3_4'])
        net['conv4_1'] = self.conv_relu(net['pool3'], self.get_wb(vgg_layers, 19))
        net['conv4_2'] = self.conv_relu(net['conv4_1'], self.get_wb(vgg_layers, 21))
        net['conv4_3'] = self.conv_relu(net['conv4_2'], self.get_wb(vgg_layers, 23))
        net['conv4_4'] = self.conv_relu(net['conv4_3'], self.get_wb(vgg_layers, 25))
        net['pool4'] = self.pool(net['conv4_4'])
        net['conv5_1'] = self.conv_relu(net['pool4'], self.get_wb(vgg_layers, 28))
        net['conv5_2'] = self.conv_relu(net['conv5_1'], self.get_wb(vgg_layers, 30))
        net['conv5_3'] = self.conv_relu(net['conv5_2'], self.get_wb(vgg_layers, 32))
        net['conv5_4'] = self.conv_relu(net['conv5_3'], self.get_wb(vgg_layers, 34))
        net['pool5'] = self.pool(net['conv5_4'])
        return net

    def conv_relu(self, input, wb):
        conv = tf.nn.conv2d(input, wb[0], strides=[1, 1, 1, 1], padding='SAME')
        relu = tf.nn.relu(conv + wb[1])
        return relu

    def pool(self, input):
        return tf.nn.max_pool(input, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    def get_wb(self, layers, i):
        #从预训练好的vgg模型中读取参数
        w = tf.constant(layers[i][0][0][0][0][0])
        bias = layers[i][0][0][0][0][1]
        b = tf.constant(np.reshape(bias, (bias.size)))
        return w, b

    def get_random_img(self):
        noise_image = np.random.uniform(-20, 20, [1, settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH, 3])
        random_img = noise_image * settings.NOISE + self.content * (1 - settings.NOISE)
        return random_img

    def loadimg(self, path):

        # 读取图片
        image = scipy.misc.imread(path)
        # 重新设定图片大小
        image = scipy.misc.imresize(image, [settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH])
        # 改变数组形状,其实就是把它变成一个batch_size=1的batch
        image = np.reshape(image, (1, settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH, 3))
        # 减去均值,使其数据分布接近0
        image = image - settings.IMAGE_MEAN_VALUE
        return image


if __name__ == '__main__':
    Model(settings.CONTENT_IMAGE, settings.STYLE_IMAGE)

settings.py代码:

# 内容图片路径
CONTENT_IMAGE = 'images/content.jpg'
# 风格图片路径
STYLE_IMAGE = 'images/style.jpg'
# 输出图片路径
OUTPUT_IMAGE = 'output/output'
# 预训练的vgg模型路径
VGG_MODEL_PATH = 'imagenet-vgg-verydeep-19.mat'
# 图片宽度
IMAGE_WIDTH = 450
# 图片高度
IMAGE_HEIGHT = 300
# 定义计算内容损失的vgg层名称及对应权重的列表
CONTENT_LOSS_LAYERS = [('conv4_2', 0.5),('conv5_2',0.5)]
# 定义计算风格损失的vgg层名称及对应权重的列表
STYLE_LOSS_LAYERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
# 噪音比率
NOISE = 0.5
# 图片RGB均值
IMAGE_MEAN_VALUE = [128.0, 128.0, 128.0]
# 内容损失权重
ALPHA = 1
# 风格损失权重
BETA = 500
# 训练次数
TRAIN_STEPS = 3000

train.py代码:

import tensorflow as tf
import settings
import models
import numpy as np
import scipy.misc


def loss(sess, model):
    # 先计算内容损失函数
    # 获取定义内容损失的vgg层名称列表及权重
    content_layers = settings.CONTENT_LOSS_LAYERS
    # 将内容图片作为输入,方便后面提取内容图片在各层中的特征矩阵
    sess.run(tf.assign(model.net['input'], model.content))
    # 内容损失累加量
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:
        # 提取内容图片在layer_name层中的特征矩阵
        p = sess.run(model.net[layer_name])
        # 提取噪音图片在layer_name层中的特征矩阵
        x = model.net[layer_name]
        # 长x宽
        M = p.shape[1] * p.shape[2]
        # 信道数
        N = p.shape[3]
        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / (2 * M * N)) * tf.reduce_sum(tf.pow(p - x, 2)) * weight
    # 将损失对层数取平均
    content_loss /= len(content_layers)

    # 再计算风格损失函数
    style_layers = settings.STYLE_LOSS_LAYERS
    # 将风格图片作为输入,方便后面提取风格图片在各层中的特征矩阵
    sess.run(tf.assign(model.net['input'], model.style))
    # 风格损失累加量
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:
        # 提取风格图片在layer_name层中的特征矩阵
        a = sess.run(model.net[layer_name])
        # 提取噪音图片在layer_name层中的特征矩阵
        x = model.net[layer_name]
        # 长x宽
        M = a.shape[1] * a.shape[2]
        # 信道数
        N = a.shape[3]
        # 求风格图片特征的gram矩阵
        A = gram(a, M, N)
        # 求噪音图片特征的gram矩阵
        G = gram(x, M, N)
        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    # 将内容损失和风格损失加权求和,构成总损失函数
    loss = settings.ALPHA * content_loss + settings.BETA * style_loss

    return loss


def gram(x, size, deep):

    # 改变shape为(size,deep)
    x = tf.reshape(x, (size, deep))
    # 求xTx
    g = tf.matmul(tf.transpose(x), x)
    return g


def train():
    # 创建一个模型
    model = models.Model(settings.CONTENT_IMAGE, settings.STYLE_IMAGE)
    # 创建session
    with tf.Session() as sess:
        # 全局初始化
        sess.run(tf.global_variables_initializer())
        # 定义损失函数
        cost = loss(sess, model)
        # 创建优化器
        optimizer = tf.train.AdamOptimizer(1.0).minimize(cost)
        # 再初始化一次(主要针对于第一次初始化后又定义的运算,不然可能会报错)
        sess.run(tf.global_variables_initializer())
        # 使用噪声图片进行训练
        sess.run(tf.assign(model.net['input'], model.random_img))
        # 迭代指定次数
        for step in range(settings.TRAIN_STEPS):
            # 进行一次反向传播
            sess.run(optimizer)
            # 每隔一定次数,输出一下进度,并保存当前训练结果
            if step % 50 == 0:
                print ('step {} is down.'.format(step))
                # 取出input的内容,这是生成的图片
                img = sess.run(model.net['input'])
                # 训练过程是减去均值的,这里要加上
                img += settings.IMAGE_MEAN_VALUE
                # 这里是一个batch_size=1的batch,所以img[0]才是图片内容
                img = img[0]
                # 将像素值限定在0-255,并转为整型
                img = np.clip(img, 0, 255).astype(np.uint8)
                # 保存图片
                scipy.misc.imsave('{}-{}.jpg'.format(settings.OUTPUT_IMAGE,step), img)
        # 保存最终训练结果
        img = sess.run(model.net['input'])
        img += settings.IMAGE_MEAN_VALUE
        img = img[0]
        img = np.clip(img, 0, 255).astype(np.uint8)
        scipy.misc.imsave('{}.jpg'.format(settings.OUTPUT_IMAGE), img)


if __name__ == '__main__':
    train()

未完待续。。。。。。。。。。。。

你可能感兴趣的:(深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移)