- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- 遥感图像分割系统:融合空间金字塔池化(FocalModulation)改进YOLOv8
xuehaisj
YOLO人工智能计算机视觉yolov8
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像分割是遥感技术领域中的一个重要研究方向,它的目标是将遥感图像中的不同地物或地物类别进行有效的分割和识别。随着遥感技术的不断发展和遥感图像数据的大规模获取,遥感图像分割在农业、城市规划、环境监测等领域具有广泛的应用前景。然而,由于遥感图像的特
- GIS数据处理软件:地理信息与遥感领域的智慧引擎
GeoSaaS
地理信息智慧城市数据库人工智能大数据gis
在地理信息与遥感技术的广阔天地间,数据处理软件如同一座桥接驳岸的智慧引擎,将海量的原始数据转化为决策的金矿,推动着城市规划、环境保护、灾害管理、资源开发等领域的深度变革。本文将深入解析其核心功能、技术前沿、应用实例及未来展望,探析数据处理软件如何为地理信息与遥感技术插上智慧的翅膀。数据处理软件的核心技术与功能矩阵数据清洗与格式转换:自动去除冗余杂乱码、异常值,格式标准化数据,确保后续处理的准确性与
- 枫叶的成长计划
小婷说
2019/12.23【行】毕:图分类,和鹰说清楚昨天的事,遥感复习到五十页,和白杨聊了聊昨天发生的事,买苹果未毕:c++未写,电影还没看1.找到给桌子的那个人2.早上七点起床做好标语准备买苹果啦3.遥感图分类问问黎霞小姐妹4.遥感背书二十五页5.做五道数学题嘻嘻嘻(˙︶˙)6.隔一小时发布买苹果消息7.中午和静雯吃饭(✪✪)晚上喝葵葵一起聊聊【见】今天是冬至好热闹,一大早群里的消息就把我惊醒,满屏
- [数据集][目标检测]卫星遥感舰船检测数据集VOC+YOLO格式2238张17类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2238标注数量(xml文件个数):2238标注数量(txt文件个数):2238标注类别数:17标注类别名称:[“AircraftCarrier”,“AuxiliaryShips”,“Cargo”,“Commander”
- 遥感多模态基础大模型汇总-实时更新
遥感-GIS
#遥感#图像处理深度学习#大模型#遥感大模型
本文内容来自下面链接,考虑到很多同学登录不了,故在此平台进行分享。遥感基础大模型TableofContentsModelsRemoteSensingVisionFoundationModels遥感视觉基础模型RemoteSensingVision-LanguageFoundationModels遥感视觉语言基础模型RemoteSensingGenerativeFoundationModels遥感生
- 基于Sentinel-1遥感数据的水体提取
遥感-GIS
sentinel图像处理arcgis
本文利用SAR遥感图像进行水体信息的提取,相比光学影像,SAR图像不受天气影响,在应急情况下应用最多,针对水体,在发生洪涝时一般天气都是阴雨天,云较多,光学影像质量较差,基本上都是利用SAR影像对受灾范围进行评估,故此本文重点描述SAR影像中的水体提取问题,目前应用较多的是Sentinel-1数据。本文结构:Sentinel-1数据的介绍Sentinel-1数据的预处理水体信息提取总结1Senti
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- ENVI处理遥感教程及学习资料
有梦想的炸豆皮
ENVI
转载自http://blog.sina.com.cn/s/blog_764b1e9d0102y64u.html微博ENVI-IDL技术殿堂2017年ENVI-IDL遥感应用培训班素材及录屏共享2017年在8个城市共举办8场培训班。共有来自260多个单位的630多人参加。今年培训班继续以中国遥感应用协会和我公司的名义共同主办,部分地区与地方遥感协会、高校联合主办。培训时间依然是5天,内容上形成卫星图
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- 【国外比较权威的免费的卫星数据网站——USGS Earth Explorer】
学地理的小胖砸
ENVI遥感遥感影像数据地理信息科学地图学卫星影像图像处理
USGSEarthExplorer网址:https://earthexplorer.usgs.gov/简介:USGSEarthExplorer是一个全面的卫星影像数据检索工具,提供历史卫星图像的下载和访问。它拥有NASALandsat系列卫星的遥感数据,这些卫星自1972年以来积累了宝贵的数据,对于历史分析、环境监测等方面具有不可替代的作用。此外,该网站还提供免费的高程模型数据,如NASA的AST
- 【目标检测数据集汇总】各类目标检测数据集VOC+YOLO格式地址汇总
熬夜写代码的平头哥∰
数据集目标检测YOLO目标跟踪
序号项目名称下载地址1【目标检测数据集】西红柿番茄成熟度检测640张3类别VOC+YOLO格式.zip点我下载2【目标检测数据集】轮船分类检测数据集500张4类别VOC+YOLO格式.zip点我下载3【目标检测数据集】手枪gun标注检测数据集VOC+YOLO格式3400张.zip点我下载4【目标检测数据集】蚊子检测数据集295张VOC+YOLO格式可训练.zip点我下载5【目标检测数据集】遥感类军
- SWAT模型高阶十七项案例分析实践技术
科研的力量
水文地质土壤SWAT模型DEM数据土地利用水资源时空分布特征CMIP6数据处理水资源
【案例实践】:1)遥感产品和SWAT模型快速建模2)基于水文响应单元(HRU)的水资源时空分布特征3)基于自定义流域与河道的SWAT模型建模与分析4)子流域划分原理及其对模型不确定性的影响5)坡度划分原理及其对模型不确定性的影响6)DEM数据空间分辨率及其模型不确定性的影响7)DEM数据来源及其对模型不确定性的影响8)DEM数据重采样方法及其模型不确定性的影响9)土地利用遥感解译及其在模型建模中的
- 2013-2023年 中国MOD17A3H植被净初级生产力(NPP)数据
小王毕业啦
大数据人工智能大数据社科数据
中国MOD17A3H植被净初级生产力(NPP)数据是基于NASA的MODIS卫星遥感数据计算得出的,这些数据对于评估生态系统碳收支、碳循环以及气候变化的影响具有重要意义。NPP数据可以反映植被通过光合作用固定大气中二氧化碳并转化为有机物质的能力,是衡量生态系统健康状况和生产力水平的重要指标。如果NPP呈现增加趋势,可能意味着生态系统的生产力在增强,有利于碳的固定和减少温室气体排放;反之,如果NPP
- WRF DA的安装、编译及运行;WRF DA变分资料同化、WRF DA混合同化新方法;变分同化的单点试验、混合同化的单点试验等
Teacher.chenchong
大气人工智能经验分享
数值预报已经成为提升预报质量的重要手段,而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法,成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键科学方法。资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。有效提升广大科研、业务人员
- <数据集>遥感船舶识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉YOLO深度学习
数据集格式:VOC+YOLO格式图片数量:15047张标注数量(xml文件个数):15047标注数量(txt文件个数):15047标注类别数:25标注类别名称:['AircraftCarrier','AuxiliaryShips','OtherShip','OtherWarship','Destroyer','Dock','Hovercraft','Submarine','Ferry','Barg
- ArcPy批量填充大量栅格图像NoData无效值的方法
疯狂学习GIS
本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件批量进行无效值(NoData值)填充的方法。 在处理栅格图像文件时,我们经常会遇到图像中存在有无效值(即NoData值)的情况。如下图所示,这里有一个矢量面要素图层和该矢量图层范围对应的一景栅格图像;可以看到,由于该栅格图像存在无效值NoData,因此栅格图像是没有完全遮盖矢量图层的。 在一些情况下,这些无效值可能会对我们的后
- 基于遥感解译与GIS技术生态环境影响评价图件制作
宝藏口袋
ArcGIS遥感生态环境大数据arcgis数据分析
《环境影响评价技术导则生态影响》(HJ19—2022)即将实施,其中生态影响评价图件是生态影响评价报告的必要组成内容,是评价的主要依据和成果的重要表现形式,是指导生态保护措施设计的重要依据。在众多图件中,土地利用图、植被类型图、植被覆盖度图、土壤侵蚀图等专题图的制作需用到大量的遥感和GIS技术。1、掌握遥感和GIS土地利用现状解译与制图技术2、掌握遥感和GIS植被分类与制图技术3、掌握遥感和GIS
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- InSAR技术大揭秘:数据处理、地形重建、形变监测一网打尽!
AIzmjl
生态insar大地测量sar卫星时间序列
合成孔径雷达干涉测量(InterferometricSyntheticApertureRadar,InSAR)技术作为一种新兴的主动式微波遥感技术,凭借其可以穿过大气层,全天时、全天候获取监测目标的形变信息等特性,已在地表形变监测、DEM生成、滑坡、火山活动、冰川运动、人工建筑物形变信息提取等多种领域展开了成功应用。InSAR作为一种新兴的空间大地测量技术,克服了传统大地测量技术需要人工野外布点、
- GEE在灾害预警中的遥感云大数据应用及GPT模型辅助分析
AIzmjl
GPT生态遥感大数据gptgee灾害预警水体湿地遥感
随着遥感技术的快速发展,云大数据在灾害、水体与湿地领域的应用日益广泛。通过遥感云大数据,我们能够实时获取灾害发生地的影像信息,为灾害预警、应急响应提供有力支持。同时,在水体与湿地监测方面,遥感云大数据也发挥着重要作用,帮助我们了解水体的分布、变化以及湿地的生态状况。近年来,GPT模型在自然语言处理领域取得了显著成果,其强大的文本生成和理解能力为遥感云大数据的应用提供了新的可能。通过将GPT模型与遥
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- 挑战杯 基于机器视觉的图像拼接算法
laafeer
python
前言图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?这是一个较为新颖的竞
- 无感
慢_简
万般小溪汇入河汉江淮澄江如练犹如一道清流时而温柔时而沁人心脾奔涛炙浪遥感如画之景,竟再无平静之意欲与江河势比美,也能会临绝顶攬日月高比天公能言矮,壮似山川不可攀举手平星辰,身动定河川心有万千阔,一叶一世界图片发自App
- GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)
此星光明
GEE案例分析前端服务器时序sentinel影像JavaScript面积
简介Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(NormalizedDifferenceWaterIndex,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。首先,我们来看一下NDWI的定义和计算方法。N
- 中科星图(案例)——NDVI植被指数的计算和图例添加以及median和mosaic的影像拼接
此星光明
中科星图前端javascriptgvendvi植被指数云计算云平台
简介在GVE云平台上实现NDVI(NormalizedDifferenceVegetationIndex)植被指数的计算和图例添加,可以通过以下步骤进行:1.数据获取和准备首先,需要获取卫星影像数据,可以选择公开的遥感数据源,如Landsat、MODIS等。数据获取后,需要对数据进行预处理,包括数据格式转换、投影变换等,以确保数据的一致性和可用性。2.NDVI计算NDVI是通过计算红外波段和可见光
- 【MATLAB】赫尔默特方差分量估计算法
Lwcah
算法
微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~有意向获取代码,请转文末观看代码获取方式~1文章简介文章DOI:10.1109/TGRS.2023.3265508链接:https://ieeexplore.ieee.org/document/10097458/keywords#keywords该篇文章讲的是一种遥感反演雪深的新方法,
- 英文论文(sci)解读复现【NO.18】基于DS-YOLOv8的目标检测方法用于遥感图像
人工智能算法研究院
英文论文解读复现目标跟踪人工智能机器学习
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要改进的YOLOv8模型(DCN_C2f+SC_
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓