代码为:
val Array(trainingData, testData) = dataset.randomSplit(Array(0.7,0.3))
val assembler = new VectorAssembler()
.setInputCols(len_df.select("Length","Breadth").columns)
.setOutputCol("features")
val data = assembler
.transform(len_df)
当调用assembler时,报异常:
[Stage 151:==> (9 + 2) / 200]16/12/28 20:13:57 WARN scheduler.TaskSetManager: Lost task 31.0 in stage 151.0 (TID 8922, slave1.hadoop.ml): org.apache.spark.SparkException: Values to assemble cannot be null.
at org.apache.spark.ml.feature.VectorAssembler$$anonfun$assemble$1.apply(VectorAssembler.scala:159)
at org.apache.spark.ml.feature.VectorAssembler$$anonfun$assemble$1.apply(VectorAssembler.scala:142)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:35)
at org.apache.spark.ml.feature.VectorAssembler$.assemble(VectorAssembler.scala:142)
at org.apache.spark.ml.feature.VectorAssembler$$anonfun$3.apply(VectorAssembler.scala:98)
at org.apache.spark.ml.feature.VectorAssembler$$anonfun$3.apply(VectorAssembler.scala:97)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.aggregate(TraversableOnce.scala:214)
经查找资料,找到解决方法:
Spark < 2.4
There is nothing wrong with VectorAssembler
. Spark Vector
just cannot contain null
values.
VectorAssembler没有问题,但是Spark Vector不支持null值存在,如果有null存在,则会报 Values to assemble cannot be null 异常
import org.apache.spark.ml.feature.VectorAssembler
val df = Seq(
(Some(1.0), None), (None, Some(2.0)), (Some(3.0), Some(4.0))
).toDF("x1", "x2")
val assembler = new VectorAssembler()
.setInputCols(df.columns).setOutputCol("features")
assembler.transform(df).show(3)
org.apache.spark.SparkException: Failed to execute user defined function($anonfun$3: (struct) => vector)
...
Caused by: org.apache.spark.SparkException: Values to assemble cannot be null.
Null对于ML算法没有意义,并且不能使用scala.Double表示。
方式一:可以放弃
assembler.transform(df.na.drop).show(2)
+---+---+---------+
| x1| x2| features|
+---+---+---------+
|3.0|4.0|[3.0,4.0]|
+---+---+---------+
方式二: 填充/用平均值替换缺失值等
// For example with averages
val replacements: Map[String,Any] = Map("x1" -> 2.0, "x2" -> 3.0)
assembler.transform(df.na.fill(replacements)).show(3)
+---+---+---------+
| x1| x2| features|
+---+---+---------+
|1.0|3.0|[1.0,3.0]|
|2.0|2.0|[2.0,2.0]|
|3.0|4.0|[3.0,4.0]|
+---+---+---------+
Spark >= 2.4
在Spark 2.4 之后, VectorAssembler 继承了 HasHandleInvalid, 可以选择skip跳过:
assembler.setHandleInvalid("skip").transform(df).show
+---+---+---------+
| x1| x2| features|
+---+---+---------+
|3.0|4.0|[3.0,4.0]|
+---+---+---------+
keep
(note that ML algorithms are unlikely to handle this correctly):
二: 保留:
注: ML算法不太可能正确处理这个问题
assembler.setHandleInvalid("keep").transform(df).show
+----+----+---------+
| x1| x2| features|
+----+----+---------+
| 1.0|null|[1.0,NaN]|
|null| 2.0|[NaN,2.0]|
| 3.0| 4.0|[3.0,4.0]|
+----+----+---------+
或者 报异常,默认是异常